Follow this preprint
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, View ORCID ProfileHideyuki Shimizu
doi: https://doi.org/10.1101/2022.11.02.22281835
Now published in PNAS Nexus doi: 10.1093/pnasnexus/pgad133
Hideki Hozumi
1Keio University School of Medicine, Tokyo 160-8582, Japan
Hideyuki Shimizu
2Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan

Data Availability
All data produced in the present work are contained in the manuscript.
Posted November 07, 2022.
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, Hideyuki Shimizu
medRxiv 2022.11.02.22281835; doi: https://doi.org/10.1101/2022.11.02.22281835
Now published in PNAS Nexus doi: 10.1093/pnasnexus/pgad133
Subject Area
Reviews and Context
0
Comment
0
TRIP Peer Reviews
0
Community Reviews
0
Automated Services
0
Blogs/Media
0
Author Videos
Subject Areas
- Addiction Medicine (420)
- Allergy and Immunology (744)
- Anesthesia (217)
- Cardiovascular Medicine (3208)
- Dermatology (270)
- Emergency Medicine (476)
- Epidemiology (13211)
- Forensic Medicine (19)
- Gastroenterology (887)
- Genetic and Genomic Medicine (5039)
- Geriatric Medicine (469)
- Health Economics (770)
- Health Informatics (3167)
- Health Policy (1121)
- Hematology (419)
- HIV/AIDS (997)
- Medical Education (467)
- Medical Ethics (125)
- Nephrology (512)
- Neurology (4783)
- Nursing (253)
- Nutrition (708)
- Oncology (2463)
- Ophthalmology (698)
- Orthopedics (277)
- Otolaryngology (336)
- Pain Medicine (318)
- Palliative Medicine (89)
- Pathology (528)
- Pediatrics (1272)
- Primary Care Research (546)
- Public and Global Health (7343)
- Radiology and Imaging (1662)
- Respiratory Medicine (962)
- Rheumatology (471)
- Sports Medicine (413)
- Surgery (532)
- Toxicology (69)
- Transplantation (227)
- Urology (199)