Follow this preprint
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, View ORCID ProfileHideyuki Shimizu
doi: https://doi.org/10.1101/2022.11.02.22281835
Now published in PNAS Nexus doi: 10.1093/pnasnexus/pgad133
Hideki Hozumi
1Keio University School of Medicine, Tokyo 160-8582, Japan
Hideyuki Shimizu
2Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan

Data Availability
All data produced in the present work are contained in the manuscript.
Posted November 07, 2022.
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, Hideyuki Shimizu
medRxiv 2022.11.02.22281835; doi: https://doi.org/10.1101/2022.11.02.22281835
Now published in PNAS Nexus doi: 10.1093/pnasnexus/pgad133
Subject Area
Reviews and Context
0
Comment
0
TRIP Peer Reviews
0
Community Reviews
0
Automated Services
0
Blogs/Media
0
Author Videos
Subject Areas
- Addiction Medicine (423)
- Allergy and Immunology (746)
- Anesthesia (218)
- Cardiovascular Medicine (3228)
- Dermatology (270)
- Emergency Medicine (476)
- Epidemiology (13241)
- Forensic Medicine (19)
- Gastroenterology (889)
- Genetic and Genomic Medicine (5059)
- Geriatric Medicine (470)
- Health Economics (772)
- Health Informatics (3181)
- Health Policy (1128)
- Hematology (423)
- HIV/AIDS (1003)
- Medical Education (468)
- Medical Ethics (125)
- Nephrology (513)
- Neurology (4804)
- Nursing (254)
- Nutrition (715)
- Oncology (2475)
- Ophthalmology (701)
- Orthopedics (278)
- Otolaryngology (337)
- Pain Medicine (320)
- Palliative Medicine (89)
- Pathology (528)
- Pediatrics (1277)
- Primary Care Research (550)
- Public and Global Health (7365)
- Radiology and Imaging (1668)
- Respiratory Medicine (969)
- Rheumatology (473)
- Sports Medicine (413)
- Surgery (534)
- Toxicology (69)
- Transplantation (232)
- Urology (199)