Follow this preprint
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, View ORCID ProfileHideyuki Shimizu
doi: https://doi.org/10.1101/2022.11.02.22281835
Now published in PNAS Nexus doi: 10.1093/pnasnexus/pgad133
Hideki Hozumi
1Keio University School of Medicine, Tokyo 160-8582, Japan
Hideyuki Shimizu
2Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan

Posted November 07, 2022.
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, Hideyuki Shimizu
medRxiv 2022.11.02.22281835; doi: https://doi.org/10.1101/2022.11.02.22281835
Now published in PNAS Nexus doi: 10.1093/pnasnexus/pgad133
Subject Area
Reviews and Context
0
Comment
0
TRIP Peer Reviews
0
Community Reviews
0
Automated Services
0
Blogs/Media
0
Author Videos
Subject Areas
- Addiction Medicine (420)
- Allergy and Immunology (744)
- Anesthesia (217)
- Cardiovascular Medicine (3204)
- Dermatology (270)
- Emergency Medicine (475)
- Epidemiology (13203)
- Forensic Medicine (19)
- Gastroenterology (884)
- Genetic and Genomic Medicine (5031)
- Geriatric Medicine (469)
- Health Economics (770)
- Health Informatics (3166)
- Health Policy (1121)
- Hematology (419)
- HIV/AIDS (997)
- Medical Education (467)
- Medical Ethics (124)
- Nephrology (512)
- Neurology (4777)
- Nursing (253)
- Nutrition (707)
- Oncology (2460)
- Ophthalmology (698)
- Orthopedics (275)
- Otolaryngology (335)
- Pain Medicine (318)
- Palliative Medicine (89)
- Pathology (527)
- Pediatrics (1272)
- Primary Care Research (545)
- Public and Global Health (7338)
- Radiology and Imaging (1659)
- Respiratory Medicine (961)
- Rheumatology (470)
- Sports Medicine (413)
- Surgery (532)
- Toxicology (68)
- Transplantation (227)
- Urology (197)