Time-to-event prediction in ALS using a landmark modeling approach, using the ALS Natural History Consortium Dataset
View ORCID ProfileDavid Schneck, Andres Arguedas, Annette Xenopoulos-Oddsson, Ximena Arcila-Londono, Christian Lunetta, James Wymer, Nicholas Olney, Kelly Gwathmey, Senda Ajroud-Driss, Ghazala Hayat, Terry Heiman-Patterson, Federica Cerri, Christina Fournier, Jonathan Glass, Alex Sherman, Mark Fiecas, David Walk
doi: https://doi.org/10.1101/2024.11.15.24317346
David Schneck
aUniversity of Minnesota Masonic Institute for the Developing Brain, Minneapolis, USA
bClinic-Based Multicenter ALS Data Collection, Minneapolis, USA
Andres Arguedas
cUniversity of Minnesota School of Public Health: Division of Biostatistics, Minneapolis, USA
Annette Xenopoulos-Oddsson
aUniversity of Minnesota Masonic Institute for the Developing Brain, Minneapolis, USA
bClinic-Based Multicenter ALS Data Collection, Minneapolis, USA
Ximena Arcila-Londono
mHenry Ford Health,
Christian Lunetta
kInstituto Maugeri,
James Wymer
fUniversity of Florida,
Nicholas Olney
gProvidence Brain and Spine Institute,
Kelly Gwathmey
hVirginia Commonwealth University,
Senda Ajroud-Driss
iNorthwestern University,
Ghazala Hayat
jSt Louis University,
Terry Heiman-Patterson
eTemple University,
Federica Cerri
lCentro Clinico NeMO,
Christina Fournier
oEmory University
Jonathan Glass
oEmory University
Alex Sherman
nMassachusetts General Hospital,
Mark Fiecas
aUniversity of Minnesota Masonic Institute for the Developing Brain, Minneapolis, USA
cUniversity of Minnesota School of Public Health: Division of Biostatistics, Minneapolis, USA
bClinic-Based Multicenter ALS Data Collection, Minneapolis, USA
David Walk
dUniversity of Minnesota Medical School, Minneapolis, USA,
bClinic-Based Multicenter ALS Data Collection, Minneapolis, USA
Data Availability
Data are available upon reasonable request for research purposes. If interested please reach out to the senior author Dr. David Walk (walkx001{at}umn.edu) for further instructions and availability questions.
Posted November 15, 2024.
Time-to-event prediction in ALS using a landmark modeling approach, using the ALS Natural History Consortium Dataset
David Schneck, Andres Arguedas, Annette Xenopoulos-Oddsson, Ximena Arcila-Londono, Christian Lunetta, James Wymer, Nicholas Olney, Kelly Gwathmey, Senda Ajroud-Driss, Ghazala Hayat, Terry Heiman-Patterson, Federica Cerri, Christina Fournier, Jonathan Glass, Alex Sherman, Mark Fiecas, David Walk
medRxiv 2024.11.15.24317346; doi: https://doi.org/10.1101/2024.11.15.24317346
Time-to-event prediction in ALS using a landmark modeling approach, using the ALS Natural History Consortium Dataset
David Schneck, Andres Arguedas, Annette Xenopoulos-Oddsson, Ximena Arcila-Londono, Christian Lunetta, James Wymer, Nicholas Olney, Kelly Gwathmey, Senda Ajroud-Driss, Ghazala Hayat, Terry Heiman-Patterson, Federica Cerri, Christina Fournier, Jonathan Glass, Alex Sherman, Mark Fiecas, David Walk
medRxiv 2024.11.15.24317346; doi: https://doi.org/10.1101/2024.11.15.24317346
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (714)
- Anesthesia (209)
- Cardiovascular Medicine (2986)
- Dermatology (254)
- Emergency Medicine (446)
- Epidemiology (12845)
- Forensic Medicine (12)
- Gastroenterology (838)
- Genetic and Genomic Medicine (4650)
- Geriatric Medicine (428)
- Health Economics (735)
- Health Informatics (2959)
- Health Policy (1076)
- Hematology (394)
- HIV/AIDS (937)
- Medical Education (430)
- Medical Ethics (116)
- Nephrology (478)
- Neurology (4439)
- Nursing (239)
- Nutrition (653)
- Oncology (2310)
- Ophthalmology (655)
- Orthopedics (260)
- Otolaryngology (328)
- Pain Medicine (285)
- Palliative Medicine (85)
- Pathology (504)
- Pediatrics (1205)
- Primary Care Research (506)
- Public and Global Health (7036)
- Radiology and Imaging (1557)
- Respiratory Medicine (926)
- Rheumatology (447)
- Sports Medicine (387)
- Surgery (494)
- Toxicology (60)
- Transplantation (213)
- Urology (186)