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Time-to-event prediction in ALS using a landmark modeling approach, using 

the ALS Natural History Consortium Dataset 

 

Abstract 

Background and Objectives: Times to clinically relevant events are a valuable outcome 

in observational and interventional studies, complementing linear outcomes such as 

functional rating scales and biomarkers. In ALS, there are several clinically relevant 

events. We developed dynamic prediction models for several of these times to events that 

can be used for clinical trial modeling and personal planning. 

 

Methods: Landmark time-to-event analysis was implemented to determine the effect of 

patient characteristics on disease progression. Longitudinal data from 1557 participants in 

the ALS Natural History Consortium dataset were used. Five outcomes in the ALS 

disease progression were considered: loss of ambulation, loss of speech, gastrostomy, 

non-invasive ventilation (NIV) use, and continuous NIV use. Covariates in our models 

include age at diagnosis, sex, onset location, riluzole use, diagnostic delay, ALSFRS-R 

scores at the landmark time, and ALSFRS-R rates of change from baseline. Internal and 

external validation techniques were used.  

 

Results: For each of our models and landmark times, we present risk prediction intervals 

for random sets of patient characteristics. We demonstrate our models’ application for an 

individual’s personal predicted time-to-event. Our internal and external validation metrics 

indicate good concordance and overall performance. The time to loss of speech models 

perform the best for each metric in terms of both internal and external validation. 

 

Discussion: Landmarking is an efficient, individualized risk prediction model that is 

intuitive for both clinicians and patients. Importantly, landmarking can be used for 

clinical trial modeling, personal planning, and development of real-world evidence of the 

impacts of treatment interventions. 
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Background and Introduction 

Amyotrophic lateral sclerosis (ALS) is characterized by progressive disability due to 

motor neuron degeneration. Its clinical manifestations and functional consequences however are 

quite varied, for several reasons. First, weakness can begin in any region of the body, including 

bulbar, limb, or ventilatory muscles, and usually spreads regionally. Second, the relative 

involvement of cortical vs. spinal motor neurons varies considerably among individuals, such 

that some suffer principally from spasticity and incoordination of the affected muscles, while 

others suffer principally from weakness. Finally, the rate of disease progression varies 

considerably among individuals.  

For these reasons, while all people living with ALS develop considerable disability, their 

individual needs, the timing of those needs, and their survival are quite variable. This variability 

complicates both clinical research and care. Regarding clinical research, clinical trial 

development for a highly heterogeneous population, with great variance in expected outcomes 

and poor predictors of outcome, requires a larger sample size than for populations with a 

homogeneous and predictable course. Regarding clinical care, individual planning is difficult if 

one cannot accurately anticipate the development of new medical needs.  

While it is not possible to alter the heterogeneity of ALS, it is possible to develop models 

of progression that can aid in clinical trial design and personal planning. At present, predictive 

survival models have been developed (1,2). While of some utility, these do not aid in predicting 

time to other recognized disease state milestones. In this study, we use Landmark Time-to-Event 

modeling (Landmarking) to demonstrate prediction models for several intermediate times to 

events that can be used for clinical trial modeling, personal planning, and development of real-

world evidence of the impacts of treatment interventions. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.15.24317346doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.15.24317346
http://creativecommons.org/licenses/by-nc-nd/4.0/


Landmarking is a well-established method for dynamic prediction modeling in a variety 

of fields of study (3-7). Recently, landmarking was used to study survival among those with ALS 

(2). However, the utility of this approach is not limited to survival as the only primary outcome. 

As such, we present here a novel application of a well-known dynamic prediction modeling 

process to predict other ALS milestones. Additionally, we have the benefit of access to an 

external validation dataset with which to validate our dynamic models. 

Overall, landmarking provides a method to compare the changing effects of different 

covariates, biomarkers, and other prognostic factors as a condition progresses over time. It is an 

efficient individualized risk prediction model that is intuitive for researchers, clinicians, and 

patients. Landmarking allows patients to understand how their risk of progression changes in 

real-time with their unique profile of characteristics. It can be used for clinical trial modeling and 

design and for analysis of the impact of changes in care as real-world evidence.  

 

Methods  

Database and Data collection:  

This study utilizes the Clinic-based Multicenter ALS Natural History Data Collection 

Study (8), a dataset being compiled by the ALS Natural History Consortium (NHC) which 

provides clinic-derived information from enrolled participants with a diagnosis of ALS who 

receive their care from ALS multidisciplinary clinics. Data collection has been ongoing since 

2015 (8). The project is deliberately inclusive to be as representative as possible of all people 

obtaining their care in the participating ALS multidisciplinary clinics. The initial sample used for 

landmark model development included data from 1977 participants from eight participating ALS 
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clinics in the US. After screening the data (see Figure 2), our final sample was N=1557. The 

sample size for each outcome and each model differs slightly based on timing of events.  

All participants provided written informed consent to be included in the database. Current 

IRB numbers: University of Minnesota (UMN) sIRB: 00019204; Istituti Clinici Scientifici 

Maugeri: 2687CE; and Centro Clinico NeMO: 247-052017. Prior IRB numbers: UMN: 

1501M61381; Northwestern: STU00209860; Saint Louis University: 28018; Temple: 25661; 

Virginia Commonwealth University: HM20009645; University of Florida: IRB201701910; 

Henry Ford: 10105; and Providence: 16-123A. Data from Emory University collected through 

the Clinical Research in ALS Study (CRiALS), IRB: 00078771. 

 

Data Availability Statement: 

 Data are available upon reasonable request for research purposes. If interested, please 

reach out to the senior author, Dr. David Walk (walkx001@umn.edu), for further instructions 

and availability questions. 

 

Statistical Models:  

Landmarking (9-11) was implemented to determine the effect of patient characteristics on 

disease progression. Landmarking incorporates longitudinal changes in time-to-event modeling 

to provide updated predictions at pre-specified times after diagnosis, referred to as landmark 

times. Landmark models allow for flexibility in understanding the effect of various covariates as 

time progresses and can accurately model time-varying effects of patient characteristics or time-

varying covariates such as biomarkers. Using landmark models, a time-to-event model is fit at 
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each prespecified landmark time with an updated, representative risk set of those who have yet to 

be censored or experience an event at that point in time after diagnosis.  

Five outcomes in ALS disease progression were considered: loss of ambulation, loss of 

speech, gastrostomy, NIV use, and continuous NIV use. We modeled our outcomes using 

longitudinal assessments of the ALS Functional Rating Scale - Revised (ALSFRS-R) (12). The 

landmarking process is detailed in Figure 1. 

Four different landmark times per outcome were applied in this study: six months, one 

year, two years, and three years past diagnosis. For each participant, the time of event was 

defined as the first instance of an ALSFRS-R score indicative of each outcome other than 

gastrostomy. Loss of ambulation was defined as ALSFRS-R question 8 ≤ 1 (Non-ambulatory 

Functional Movement), loss of useful speech was defined as ALSFRS-R question 1 = 0 (Loss of 

Useful Speech), NIV usage was defined as ALSFRS-R question 12 ≤ 3 (Intermittent use of 

BiPAP), and continuous NIV usage was defined as ALSFRS-R question 12 ≤ 1. For 

gastrostomy, the procedure date was used as the event time. Participants that did not experience 

an event were considered to be right-censored at their last recorded visit time. 

The following covariates were included in each of our models: all four ALSFRS-R 

subscores (Speech/Swallowing, Fine Motor Skills, Gross Motor Skills, and Respiratory 

Function), onset location (bulbar vs. limb), age at diagnosis, biological sex, diagnostic delay 

(time from reported onset of symptoms to clinical diagnosis), time between Last Observation 

Carried Forward (LOCF) and landmark time, and rate of change for each ALSFRS-R subscore 

since diagnosis. Edaravone usage was not included in our models as it was not recorded in our 

validation dataset.  
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For each landmark time s, we implemented a LOCF approach for longitudinal predictors. 

Each covariate was included in all models. The most recent ALSFRS-R scores were taken to be 

the representative values of each patient’s ALS severity at the landmark time. We included a 

model covariate to account for the variability in the length of time passed between landmark time 

s and the LOCF. 

 

Prediction:  

For each outcome and each landmark model, we grouped individuals in the risk set into 

quintiles based upon the model’s linear predictor for rates of progression: very slow, slow, 

intermediate, fast, and very fast. To visualize our results, we randomly selected three participants 

per risk group and plotted predicted time-to-event probabilities to compare the trajectories across 

groups. Furthermore, we present predicted time-to-event curves for typical individuals with a 

given set of characteristics to illustrate the dynamic prediction modeling process of landmark 

time-to-event models. 

 

Validation: 

 For each model, we performed both internal and external validation to determine the 

overall generalizability of our models. For external validation we used an ALS cohort dataset 

from Emory University (‘Emory ALS dataset’). The Emory cohort demographic information and 

a comparison with the NHC dataset can be found in Supplementary Materials. 

For internal validation, we calculated a cross-validated concordance value C index and 

integrated Brier Score (iBS) (13). C index values near 1, perfect predictive ability, indicate good 

model performance, and values near 0.5, essentially random chance, indicate poor model 
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performance. To calculate our C index values, we implemented five-fold cross validation 

techniques using the `rms` R package (14).   

The iBS, a measure of overall performance and calibration, is a measure of how well our 

predicted time-to-event risks match up with the observed risks. Values closer to zero indicate 

better overall performance across the prediction time. For our iBS, we used five-fold cross 

validation techniques using the riskRegression package (15). All internal discrimination and 

overall performance metrics are computed with cross-validation techniques, and external 

validation metrics were computed using the Emory ALS dataset. All performance metrics were 

evaluated 5 years out from the given landmark time. Analysis was carried out with R version 

4.4.0 (16). 

 

Results  

The baseline demographics of the entire cohort of patients with any number of ALSFRS-

R visits completed are presented in Table 1. Of the total sample, 62.7% were prevalent cases, 

defined as having been enrolled more than 90 days after date of diagnosis. 978/1977 underwent 

at least one form genetic testing; of these, 76/572 (13%) had a C9orf72 repeat expansion, 36/475 

(8%) had a pathogenic variant in Superoxide dismuatase 1 (SOD1), and 9/449 (2%) had a 

pathogenic variant in Fused-in-Sarcoma (FUS). Our flow diagram can be found in Figure 2. We 

further filtered the patients from our total 1557 patients for each of the landmark times such that 

as the landmark time increases, our sample sizes for the landmark models decrease due to events 

or censoring. For each of the outcomes considered, our 3-year landmark model sample size is 

between 100 and 200 participants. 
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Figure 3 shows a forest plot of some of the key variables included in our time-to-

gastrostomy models. Estimates to the right of the vertical line represent risk factors, while 

estimates to the left indicate protective factors. For example, higher ALSFRS-R subscores mean 

less risk. Estimates typically stay consistent among the different landmark models; however, 

there tends to be a slight bias towards variables having no effect with the later landmark times 

due to decreased sample sizes later in follow-up. In general, ALSFRS-R subscores, onset 

location, and diagnostic delays are strongly associated variables across outcome and landmark 

models. 

To characterize the clinical application of our models to individual patients, we present 

our time-to-event prediction curves by classified progression rate for loss of ambulation at the 

one-year landmark time in Figure 4. Each boxplot in this figure contains the predicted survival 

probabilities of a randomly selected individual patient from within our dataset. Collectively, 

these lines indicate the ability of our models to separate patients into distinct progression rate 

groups. Each individual boxplot can be represented further by an individualized predicted time-

to-event probability curve as in Figure 5.  

 

Performance metrics: 

We present our discrimination and overall performance metrics in Table 2. Across all 

outcomes, the internally validated C index indicates overall good discriminatory ability, with our 

time to loss of useful speech and continuous NIV usage models performing the best. Each of the 

models performed well when applied to the external validation dataset, and in some cases 

outperformed the internal validation metric. All the discrimination metrics presented a downward 
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trend as the landmark time increases, which reflects loss of power with decreasing sample size as 

landmark time increases.  

Our iBS values for the internally validated models indicate good performance between 

the landmark time and the five years following. Each outcome’s iBS values tended to increase as 

the landmark time increased in the internal validation models, while the external validation iBS 

values for time to gastrostomy and time to loss of useful speech tended to decrease slightly. The 

loss of useful speech and continuous NIV usage models had the best overall performance among 

all the outcomes considered. Again, the internally validated and externally validated iBS values 

were similar, indicating good generalizability to the Emory ALS dataset. In most cases the 

internal metrics were better than the external metrics because the model was built with the ALS 

NHC dataset. However, time to gastrostomy models performed better in the Emory ALS dataset 

than in the NHC dataset. 

 

Rshiny Web Application 

An interactive web application is being developed using Shiny (17) to demonstrate the 

utility and flexibility of the landmarking time-to-event modeling approach. Contained within this 

web application are group-based time-to-event probability prediction results for each outcome 

and for each landmark model time considered.  

 Similarly, for each outcome and for each landmark time, we offer the ability to view 

individualized time-to-event prediction curves for a given set of characteristics that are included 

in the models. A clinician can use this web application to obtain an estimated time-to-event 

prediction probability for any of the considered intermediate outcomes in ALS progression.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.15.24317346doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.15.24317346
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 

We implemented landmark time-to-event analysis for five intermediate outcomes in ALS 

and demonstrated the dynamic modeling approach from date of diagnosis. We modeled our time-

to-event analysis using longitudinal records from the ALS NHC, which represents a broad clinic-

based population of people living with ALS. For each outcome and landmark time, we presented 

prediction diagnostic statistics, provide measures of internal and external model validation, and 

demonstrated the application of our prediction models for patients and clinicians via our group 

and individual prediction plots.  

Our models contribute to time-to-event modeling of clinically meaningful intermediate 

events in ALS. Previous studies with natural history datasets have developed personalized 

prediction models (1,18), and the landmark time-to-event approach adds a dynamic component 

to the modeling process. Westeneng et. al, for example, used a rate of change for ALSFRS-R 

scores across all of follow-up rather than modeling with visit-specific rates of change. 

Furthermore, many studies (1,2,18,19) that seek to develop personalized prediction models for 

ALS looked at survival only or composite endpoints for death, tracheostomy, or use of NIV for 

more than 23 hours per day. Our models look at intermediate events in the ALS progression that 

can be used in clinical trials modeling, assessment of real-world evidence, and personal planning. 

Though we focused solely on intermediate outcomes, the landmark approach can be extended to 

survival or time-to-event composite endpoint modeling as well. This approach can also be 

utilized for time to advancement in ALS staging, such as with King’s or MiToS (20,21). 

Our models performed well in both prediction metrics used. Our early landmark models 

consistently had a C-index value greater than 0.7, with some outcomes such as loss of useful 

speech and continuous NIV usage yielding similar values in the later landmark models as well. 
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Furthermore, we demonstrate that our models generalize to the Emory ALS dataset via our 

external validation iBS and C Index values. As our database continues to grow, we will improve 

our models’ predictive capability. 

 

Limitations: 

The inclusion of prevalent cases into our study likely biased our results and predictions 

toward slower-progressing individuals. Furthermore, because ALS has a short median survival 

time and these outcomes progress quickly, we lose power as landmark times increase, which 

diminishes our predictive ability in later landmark models. 

Because we used a real-world dataset, the frequency of visits for individuals varies 

considerably. We have ALSFRS-R scores at most every three months, and as such there are gaps 

in our understanding of the progression of disease. Furthermore, we defined most of our 

outcomes based upon ALSFRS-R scores, so we had to model with the assumption that many of 

these events of interest did not happen exactly on the day the data were recorded. In addition, we 

were restricted to ALSFRS-R being our only time-varying, longitudinal covariate.  

As the number of treatments for ALS grows, the natural history will change. In addition, 

therapies specific to individual characteristics, such as antisense oligonucleotides for specific 

pathogenic variants, will need to be included in modeling. Furthermore, edaravone was not 

included in our models as its usage was not included in our validation dataset. 

Finally, we are only modeling one event path at a time with this landmarking approach, 

and therefore do not explicitly include the effect of other intermediate outcomes on risk of 

intermediate outcome. If the reader is interested in a semi-competing risks modeling approach 

for ALS time-to-event analyses, we refer you to our companion paper, Arguedas et al., ‘Risk 
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Prediction for ALS using Semi-competing Risks Models with Applications to the ALS Natural 

History Consortium Dataset.’ 

 

Next steps: 

 As genetic testing becomes the standard of care in ALS, we will add genotype to 

phenotype information in our list of baseline characteristics. In addition, we will incorporate 

additional clinical measures and blood biomarkers into our model and determine the degree to 

which they impact model performance. Finally, we plan to model the applicability of our 

landmarking model as a tool for propensity-score matching and pragmatic clinical trials.  
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Supplementary Materials 

Table S.1 compares the NHC sample used to build our models and the Emory dataset 

used to validate them. The sample size from Emory reflects the eligibility criteria used for the 

NHC sample. Contained within the table are both the p value for the difference in sample 

characteristics (via Pearson’s Chi-Squared tests) and the standardized mean difference (SMD) 

[1]. The SMD is an effect size metric used to quantify the amount by which variables differ 

between two groups. 

 Established criteria for interpreting SMD values are as follows: a SMD of 0 indicates that 

the groups are identical, a value below 0.1 is considered inconsequential, values between 0.1 and 

0.2 are small differences, and anything about 0.2 is considered large. 

 There were negligible differences in the proportion of males in the two samples, but 

small differences existed in the proportion of participants with limb onset, age of onset, and age 

of diagnosis. Large differences were observed in the number of visits for the two samples and the 

proportion of participants that have taken Riluzole. 
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Tables 

Characteristic N = 1,5571 

Male 917 (59%)

Limb onset site 1,050 (67%)

Age at Onset (years) 62 (54, 69)

Age at Diagnosis (years) 64 (57, 71)

Diagnostic Delay (days)     365 (220, 609)

Uses Riluzole 1,210 (78%)

Number of ALSFRS 
visits 

5 (3, 7)

1 n (%); Median (IQR) 

Table 1: Baseline demographics and medical history for our overall cohort of patients 
incorporated in this study. 
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 Validation Typea 

 
 
Landmark Time (Years from Diagnosis) 

0.5 1 2 3 

Loss of Ambulation - C 
Index 

Internal 0.775 0.793 0.750 0.699 

External 0.752 0.740 0.713 0.661 

Loss of Ambulation - iBS Internal 0.155 0.156 0.165 0.215 

External 0.174 0.185 0.187 0.208 

Gastrostomy - C Index Internal 0.745 0.669 0.673 0.610 

External 0.782 0.803 0.736 0.759 

Gastrostomy - iBS Internal 0.170 0.174 0.177 0.198 

External 0.164 0.158 0.159 0.128 

NIV - C Index Internal 0.683 0.720 0.616 0.557 

External 0.666 0.662 0.648 0.721 

NIV - iBS Internal 0.179 0.173 0.200 0.259 

External 0.172 0.183 0.189 0.204 

Continuous NIV - C Index Internal 0.861 0.852 0.854 0.827 

External 0.703 0.689 0.756 0.777 

Continuous NIV - iBS Internal 0.075 0.082 0.087 0.094 

External 0.144 0.137 0.097 0.072 

Loss of Useful Speech - C 
Index 

Internal 0.870 0.884 0.863 0.785 

External 0.843 0.851 0.816 0.808 

Loss of Useful Speech - iBS Internal 0.103 0.099 0.096 0.140 

External 0.133 0.116 0.116 0.110 

 
Table 2. Internally cross-validated and externally validated C index values and iBS from 
landmark models for each outcome. C index values closer to one and iBS values closer to zero 
indicate better performance.  
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Characteristic Emory (N = 1,497)1 NHC (N = 1,507)1 SMD2 p-value3 

Male 877 (59%) 917 (59%) 0.006 0.89 

Limb onset site 1,090 (73%) 1,050 (67%) 0.12 0.001 

Age at Onset (years) 61 (52, 69) 62 (54, 69) 0.12 .002 

Age at Diagnosis (years) 62 (53, 70) 64 (57, 71) 0.16 <0.001 

Uses Riluzole 491 (33%) 1,210 (78%) 1.01 <0.001 

Number of ALSFRS 
visits 

3.00 (2.00, 5.00) 4.00 (3.00, 7.00) 0.29 <0.001 

1 n (%); Median (IQR) 
2 Standardized Mean Difference 
3 Pearson’s Chi-squared test 
 

   

Table S.1: Presented here are the Emory dataset demographics and baseline characteristics in 
comparison to the NHC dataset. The Emory dataset was used as a validation set for our landmark 

models. 
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Figure Captions 

Figure 1: The landmark process is illustrated with a set of three patients with follow up times 

represented by triangles or Xs. Figure A shows the original follow up time for three patients 

from diagnosis. All three patients are included in the original model. Figure B shows a landmark 

model that starts two years from diagnosis. Patient 2 and 3 have yet to experience the event, so 

they are included in the model (blue portion of line), whereas Patient 1 already experienced the 

event (designated with an X) and is therefore censored. 

 

Figure 2: Eligibility criteria used to filter the total database to the sample used in our models. 

Our total number of subjects after filtering was 1557. 

 

Figure 3: Forest plot illustrating the time-to-event model regression coefficients for four 

separate landmark models for time to gastrostomy. The dot represents the coefficient estimate 

and the line intersecting the dot is the 95% CI for the regression estimate. Estimates to the left of 

the vertical black line represent protective variables and estimates to the right indicate the 

variable is associated with accelerated progression. 

 
Figure 4: Time-to-event probability predictions at the 1-year landmark time for loss of 

ambulation, grouped by the Cox proportional hazards model linear predictor (very slow to very 

fast). Each row represents a summary of an individual’s predicted time-to-event probability 

curves, given that they had not experienced the event at the 1-year landmark time. The gray dot 

in the center of each line represents the time at which the predicted probability of not 

experiencing an event is equal to 50%. The colored boxes represent the times at which the 

predicted probability of not experiencing an event is between 75% and 25%, and the gray line 

that intersects the colored boxes for each patient represent the predicted probabilities of 90-10%. 

 

Figure 5: Illustration of an individual time-to-event probability prediction at 1-year landmark 

time for loss of ambulation. At any given landmark time, we can input a set of characteristics to 

calculate an individual’s predicted time-to-event curve. 
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