Abstract
Biomedical research often utilizes Cox regression for the analysis of time-to-event data. The pervasive use of frequentist inference for these analyses implicates that the evidence for or against the presence (or absence) of an effect cannot be directly compared and that researchers must adhere to a predefined sampling plan. As an alternative, the use of Bayes factors improves upon these limitations, which is especially important for costly and time-consuming biomedical studies. However, Bayes factors involve their own difficulty of specifying priors for the parameters of the statistical model. In this article, we develop data-driven priors for Cox regression tailored to nine subfields in biomedicine. To this end, we extracted hazard ratios and associated x% confidence intervals from the abstracts of large corpora of already existing studies within the nine biomedical subfields. We used these extracted data to inform priors for the nine subfields. All of our suggested priors are Normal distributions with means of 0 and standard deviations closely scattered around 1. We propose that researchers use these priors as reasonable starting points for their analyses.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was supported by the This research was supported by a Dutch scientific organization VIDI fellowship grant (016.Vidi.188.001) awarded to Don van Ravenzwaaij and a Japanese JSPS KAKENHI grant (21K20211) awarded to Jorge N. Tendeiro.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Author Note
Data Availability
The data and analysis code that support the findings of this study are available online at https://osf.io/ua4ys/.