Abstract
Background Idiopathic/Isolated rapid eye movement sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies and eventually phenoconverts to overt neurodegenerative diseases including Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Associations of baseline resting-state electroencephalography (EEG) with phenoconversion have been reported.
Objectives In this study, we aimed to develop machine learning models to predict phenoconversion time and subtype using baseline EEG features in patients with iRBD.
Methods At baseline, resting-state EEG and neurological assessments were performed on patients with iRBD. Calculated EEG features included spectral power, weighted phase lag index and Shannon entropy. Three models were used for survival prediction, and four models were used for α-synucleinopathy subtype prediction. The models were externally validated using data from a different institution.
Results A total of 236 iRBD patients were followed-up for up to eight years (mean 3.5 years), and 31 patients converted to α-synucleinopathies (16 PD, 9 DLB, 6 MSA). The best model for survival prediction was the random survival forest model with an integrated Brier score of 0.114 and a concordance index of 0.775. The K-nearest neighbor model was the best model for subtype prediction with an area under the receiver operating characteristic curve of 0.901. EEG slowing was an important feature for both models.
Conclusions Machine learning models using baseline EEG features can be used to predict phenoconversion time and its subtype in patients with iRBD. Further research including large sample data from many countries is needed to make a more robust model.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017M3C7A1029688) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2017R1A2B2012280). This work was partially supported by a grant from the Italian Ministry of Health to IRCCS Ospedale Policlinico San Martino (Fondi per la Ricerca Corrente 2019/2020, and Italian Neuroscience network (RIN)). This work was developed within the framework of the DINOGMI Department of Excellence of MIUR 2018-2022 (legge 232 del 2016). This work was carried out within the framework of the project "RAISE - Robotics and AI for Socio-economic Empowerment" and has been supported by European Union - NextGenerationEU.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of Seoul National University Hospital (IRB Number 1406-100-589) gave ethical approval for this work. IRB of University Neurology Clinics at Policlinico San Martino in Genoa (IRB Number 703) gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Conflicts of interest: Nothing to report.
Funding: This work was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017M3C7A1029688) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2017R1A2B2012280). This work was partially supported by a grant from the Italian Ministry of Health to IRCCS Ospedale Policlinico San Martino (Fondi per la Ricerca Corrente 2019/2020, and Italian Neuroscience network (RIN)). This work was developed within the framework of the DINOGMI Department of Excellence of MIUR 2018-2022 (legge 232 del 2016). This work was carried out within the framework of the project "RAISE - Robotics and AI for Socio-economic Empowerment” and has been supported by European Union - NextGenerationEU.
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.