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PRIORS IN COX REGRESSION 2

Abstract

Biomedical research often utilizes Cox regression for the analysis of time-to-event data.

The pervasive use of frequentist inference for these analyses implicates that the evidence

for or against the presence (or absence) of an effect cannot be directly compared and that

researchers must adhere to a predefined sampling plan. As an alternative, the use of Bayes

factors improves upon these limitations, which is especially important for costly and

time-consuming biomedical studies. However, Bayes factors involve their own difficulty of

specifying priors for the parameters of the statistical model. In this article, we develop

data-driven priors for Cox regression tailored to nine subfields in biomedicine. To this end,

we extracted hazard ratios and associated x% confidence intervals from the abstracts of

large corpora of already existing studies within the nine biomedical subfields. We used

these extracted data to inform priors for the nine subfields. All of our suggested priors are

Normal distributions with means of 0 and standard deviations closely scattered around 1.

We propose that researchers use these priors as reasonable starting points for their analyses.

Keywords: Bayes factor, Cox regression, hypothesis testing, prior elicitation, survival
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PRIORS IN COX REGRESSION 3

Data-driven Prior Elicitation for Bayes Factors in Cox Regression for Nine

Subfields in Biomedicine

The collection and analysis of time-to-event data forms a central part of modern

biomedical research (see, e.g., Boney et al., 2005; D’Agostino et al., 2008; Diener et al.,

2004; Kenchaiah et al., 2002; Singh & Mukhopadhyay, 2011; Stupp et al., 2009). In these

types of designs, the outcome variable is the time until an event of interest occurs, which is

commonly called the survival time. In the medical context, this event of interest could be,

for example, death, relapse towards alcoholism, disease/symptom onset, or recovery. Using

survival analysis (we refer the interested reader to other sources, which treat survival

analysis more thoroughly; e.g., Bradburn et al., 2003a, 2003b; Clark et al., 2003a, 2003b;

Collett, 2015; Harrell, 2015; Hosmer et al., 2008; Klein & Moeschberger, 1997; Therneau &

Grambsch, 2000), it is possible to estimate differences in event rates between conditions,

which makes it particularly appealing for clinical trials. For instance, evidence about the

effectiveness of an oncological treatment of cancer patients could be gathered by comparing

the survival times of patients receiving the treatment to the survival times of patients

receiving a placebo or an active control treatment (for examples see Kantoff et al., 2010;

Rinke et al., 2009; Stupp et al., 2009).

The use of frequentist inference for the analysis of survival data has a long tradition

in biomedical research and is still very common today (Brard et al., 2017). Classical

frequentist inference, however, is not well suited to quantify evidence in favor of the

absence of an effect. In addition, frequentist inference requires fixing the study sample size

in advance to avoid an inflation of the Type I and/or Type II error rates (Yu et al., 2014),

a downside that can be particularly costly in the realm of resource-intensive biomedical

research and clinical trials (Berry, 2006; Brard et al., 2017; Moyé, 2008). As an alternative,

Bayesian statistics have gained popularity among researchers (van de Schoot et al., 2017).

In particular, Bayes factors (Jeffreys, 1939, 1948, 1961; Kass & Raftery, 1995) do not suffer

from the two limitations mentioned before and are therefore a valuable alternative for
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PRIORS IN COX REGRESSION 4

conducting inference in biomedical research (Goodman, 1999b).

Bayesian modeling requires the specification of a prior distribution for the

parameters of the model. The prior expresses one’s beliefs about the plausibility of

parameter values before observing the data (Kruschke, 2010, 2015; Kruschke & Liddell,

2018). Oftentimes, it is notoriously difficult to express these beliefs and different priors

sometimes lead to qualitatively different Bayes factors (Gallistel, 2009; Kruschke & Liddell,

2018; Liu & Aitkin, 2008; Sinharay & Stern, 2002; Tendeiro & Kiers, 2019; Vanpaemel,

2010). As a result, some researchers lament that the use of Bayesian statistics involves

subjectivity (e.g., Efron, 1986) and that proper guidance is missing, possibly resulting in

hesitation to use Bayesian inference. Hence, recommendations for well-established default

priors in Bayesian survival analysis - in particular Cox proportional hazards regression

(henceforth called Cox regression or Cox model; Cox, 1972) - are missing and urgently

needed.

In this article, we propose default priors for Bayesian Cox regression tailored to nine

subfields within biomedicine. The construction of these priors harnesses historical records

consisting of large corpora of hazard ratios and associated x% confidence intervals from

existing studies within the respective subfields. We argue that these proposed priors can be

used as reasonable defaults or starting points for biomedical researchers wishing to conduct

a Bayesian Cox regression.

The remainder of this article is structured as follows: First, we provide an overview

of Cox regression and Bayes factors. Second, we briefly review how priors can be defined.

Third, we explain our process of generating priors for nine subfields in biomedicine and

present the corresponding results. Fourth, we reflect on our findings and implications

thereof, and conclude with recommendations.

Bayes Factors in Cox Regression

Survival analysis is a statistical method to analyze time-to-event/survival data.

Among the many existing forms of survival analysis - for example, Kaplan-Meier
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product-limit estimator (Kaplan & Meier, 1958), parametric survival analyses (e.g.,

Exponential, Gompertz, and Weibull), and Cox regression (Cox, 1972) - the latter is used

most frequently within biomedicine (e.g., Bradburn et al., 2003a). Therefore, our treatment

of priors for survival analysis is limited to the case of Cox regression.

In Cox regression, the hazard function λ (t) presents the risk of an event happening

in a small time period around a specific time t within cases for which the event has not yet

happened before time t (see, e.g., Clark et al., 2003a; Harrell, 2015). The specific λ (t) is

allowed to have any shape but must be proportional across all values of an independent

variable x. Usually, the main goal is not to estimate λ (t) but rather to estimate the β

parameter of the Cox model:

λ (t | x) = λ (t) exβ. (1)

Here and throughout, we work with the specific case where x is dichotomous and

dummy-coded (i.e., there are two conditions, a common situation in biomedical designs).

For this scenario, a hazard ratio can be calculated

HR = eβ, (2)

which provides information about the relative hazard rates between conditions.

In clinical trials, HR is often the key indicator regarding the effectiveness of a

treatment. HR = 1 (or β = 0) means that the two conditions have the same risk of the

event happening at any t; HR > 1 (or β > 0) means that the experimental condition has a

higher risk of the event happening at any t; HR < 1 (or β < 0) means that the control

condition has a higher risk of the event happening at any t. Frequentist inference on HR or

β is then conducted either in the form of null hypothesis significance testing (i.e., test

statistic and p-value) or in the form of estimation (i.e., a point estimate accompanied with

a confidence interval).

The reliance on frequentist inference (Chavalarias et al., 2016; Goodman, 1999a) has

some undesirable consequences for biomedical research. Here, we focus on two of these
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consequences, namely (1) the impossibility to obtain evidence for the null hypothesis and

(2) the inability to adjust the sampling plan based on interim results. Concerning (1), it is

important to not only determine whether a treatment is working but also whether a

treatment is not working over and above a placebo effect. The frequentist approach is not

suitable for this because it only allows rejecting the hypothesis that there is no effect, but

not accepting it (e.g., Bakan, 1966; Gallistel, 2009; Hoekstra et al., 2018; Ioannidis, 2005;

Rouder et al., 2009; Wagenmakers, 2007).

Concerning (2), the use of frequentist inference prescribes the diligent adherence to

a predefined sampling plan, prohibiting to continue or prematurely stop data collection

based on interim data analyses (e.g., Armitage et al., 1969; Rouder, 2014; Schönbrodt

et al., 2017; Tendeiro et al., 2022). Further criticism is described elsewhere (see, e.g.,

Goodman, 1999a; International Committee of Medical Journal Editors, 1997; Rennie, 1978;

van Ravenzwaaij et al., 2019; Wagenmakers, 2007).

Bayesian testing in the form of Bayes factors permits a direct comparison between

the evidence for the null hypothesis that there is no effect and an alternative hypothesis

that operationalizes that there is some effect (Rouder et al., 2009). For instance, with

BF10 = 14, it allows the interpretation that the obtained data is 14 times more likely under

the chosen hypothesis that there is some effect compared to the hypothesis that there is no

effect; similarly, BF10 = 0.2 indicates that the obtained data is 1/0.2 = 5 times more likely

under the hypothesis that there is no effect compared to the chosen hypothesis that there is

some effect.

Moreover, using Bayes factors, it is legitimate to monitor the results and stop data

collection once a predetermined evidence threshold is reached (Armitage et al., 1969;

Rouder, 2014; Schönbrodt & Wagenmakers, 2018; Schönbrodt et al., 2017; Stefan,

Schönbrodt, et al., 2022; Tendeiro et al., 2022). Thus, Bayes factors take the evidence for

and against both the null and alternative hypotheses into account, yield more substantial

interpretations, and empower researchers to sample just the sufficient amount of cases.
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These characteristics of Bayes factors are critical for biomedical research as studies

(especially clinical trials) can be expensive and time-consuming.

In the case where there is a point null hypothesis stating that there is no effect

H0 : β = 0 (3)

and an interval alternative hypothesis stating that there is an effect

H1 : β ∼ f (ϕ) , (4)

the Bayes factor is a ratio of a marginal likelihood and a likelihood evaluated at β = 0.

Here, f (.) represents any probability density function and ϕ the associated parameters.

Let Ω1 be the parameter space under the alternative hypothesis; then the Bayes factor is:

BF10 = P (D | H1)
P (D | H0)

=
∫

β∈Ω1

Likelihood︷ ︸︸ ︷
f (D | β)

Prior︷ ︸︸ ︷
f (β) dβ

f (D | β = 0)︸ ︷︷ ︸
Likelihood at β=0

. (5)

In Equation 5, the integral constitutes a weighted average of the likelihood, with weights

supplied by the prior. Depending on the complexity of the underlying statistical model,

computing the expression in Equation 5 can be challenging. Through concerted efforts of

researchers to develop closed-form solutions and through the explosion of computational

power over recent decades that allows applying complex numerical methods (e.g., Monte

Carlo sampling and bridge sampling; Betancourt, 2018; Brooks et al., 2011; Gilks et al.,

1995; Gronau et al., 2017; van Ravenzwaaij et al., 2018), computing the expression in

Equation 5 and variants of it has become feasible. These efforts have led to method

developments and software implementations for calculating Bayes factors for survival

analyses (Bartoš, 2022; Bartoš et al., 2022; Linde, Tendeiro, et al., 2022; Linde, van

Ravenzwaaij, et al., 2022) and many other designs (e.g., Gronau et al., 2020; Gu et al.,

2021; Heck et al., 2020; JASP Team, 2023; Morey & Rouder, 2018; Rouder et al., 2012;

Rouder et al., 2009; van Lissa et al., 2021; van Ravenzwaaij et al., 2019).
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Choosing Priors

Even though it is possible nowadays to calculate Bayes factors for various sorts of

designs, it remains difficult to specify an appropriate prior distribution (or prior for short)

for the parameters of interest (cf. Equation 5). The prior is a probability distribution that

is placed on the statistical model’s parameters of interest and it expresses belief over the

plausibility across all possible parameter values before taking into account new data. In the

context of null hypothesis Bayes factor calculations, the prior is one important element of

the alternative hypothesis. Even among researchers who advocate Bayesian statistics, there

is disagreement on how the prior should be specified (see, e.g., Berger, 2006; Goldstein,

2006).

Objective Bayesians strive to define non-informative priors that are as “objective”

as possible. Objective Bayesians assert that the results of Bayesian analyses should depend

only to a minimal extent on the beliefs of different people. They promote default priors

that can be used when no other information is available and often seek to find priors that

“behave well” and fulfill certain mathematical properties (see, e.g., Bayarri et al., 2012;

Consonni et al., 2018, for more details). Subjective Bayesians, on the other hand, counter

that the subjective nature of the prior is an integral part of Bayesian analyses. According

to them, the prior allows the incorporation of domain knowledge and results from prior

studies into Bayesian analyses and therefore permits tests of theories (Dienes, 2011;

Vanpaemel, 2010). Further, they state that it is questionable whether a truly “objective”

prior even exists.

Recently, the opportunities that well-defined priors open were increasingly

recognized in biomedical research. Prior elicitation procedures, in which informed priors

are defined by means of using external sources, gained popularity within biomedical

research (e.g., Guo et al., 2019; Johnson et al., 2010; Thall & Cook, 2004; van de Schoot

et al., 2018; Zondervan-Zwijnenburg et al., 2017). There are various forms of prior

elicitation. For example, through structured interviews, information about prior beliefs can
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be extracted by one or multiple experts in the respective field, which is subsequently

combined into one prior (see, e.g., Johnson et al., 2010; O’Hagan et al., 2006; Stefan,

Evans, et al., 2022; van de Schoot et al., 2018). Tools like the MATCH software (Morris

et al., 2014) have been developed for this purpose. Alternatively, the results of

meta-analyses and prior research in general can be used to create a prior (e.g., Rietbergen

et al., 2011; van de Schoot et al., 2018). That is, researchers could use the overall effect size

combined with a measure of uncertainty from a meta-analysis to construct an informed

prior for their own analysis; or they could conduct their own literature search and extract

the relevant statistics and use them for developing priors. This approach of using prior

study results can also be combined with an empirical Bayes approach, which utilizes the

current data to create a prior instead of predefining it (e.g., Casella, 1985). Such a

procedure was proposed by van Zwet and Gelman (2022).

In this article, we follow the approach of using results of prior studies to create

priors. For this, we conducted our own literature search instead of relying on

meta-analyses. The reason for this is that we aim to suggest priors that are generic, such

that they apply to entire medical subfields; most meta-analyses do not offer this generality.

The Current Study

In the present article, we develop priors for Bayesian Cox regression for nine

subfields that we believe are representative for different areas of research within

biomedicine. For the construction of these priors we make use of reported hazard ratios

and associated x% confidence intervals from large corpora of existing studies. These

extracted data are then combined through pooling to generate priors.

Methods

We selected the subfields in biomedicine considered for further investigation based

on a taxonomy provided by Scimago (available at

https://www.scimagojr.com/journalrank.php; SCImago, n.d.). On the Scimago website, we

used “Medicine” as a subject area, upon which a list of medical subfields were provided (see
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Figure 1). Among those, we selected the following nine subfields for further consideration:

1. Anesthesiology and pain medicine

2. Cardiology and cardiovascular medicine

3. Gastroenterology

4. Hematology

5. Immunology and allergy

6. Neurology

7. Oncology

8. Psychiatry and mental health

9. Pulmonary and respiratory medicine

Our selection was based on three criteria: (1) we aimed to obtain a manageable

number of subfields (between eight and twelve); (2) we aimed to obtain subfields with

limited overlap; and (3) we aimed to obtain subfields that represent relatively large areas of

study within biomedicine. For each of the nine subfields, we obtained a list of the top

journals from Scimago. We considered only journals (i.e., neither book series, nor

conferences and proceedings, nor trade journals); we considered journals from all

regions/countries; and the journal list was based on the year 2022 (see Figure 1 for an

example of the settings on the Scimago website for the subfield of “Anesthesiology and

pain medicine”). The extraction of the top journals for all nine subfields yielded 2, 469

journals in total (see columns 1 and 2 of Table 1). Some subfields shared a set of journals;

for example, the journal “Pain” is a top journal for both the subfields of “Anesthesiology

and pain medicine” and “Neurology”. We found that there was not a lot of overlap of

journals between the subfields, with 2, 196 of the 2, 469 journals being uniquely assigned to

only one subfield.
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Figure 1

Settings for extracting top journals from Scimago (available at

https://www.scimagojr.com/journalrank.php; SCImago, n.d.) for one of the nine considered

subfields in biomedicine; in this case “Anesthesiology and pain medicine”.

As a separate step, we used Scopus to obtain a list of medical articles. We used the

following search query:

ABS(("hazard ratio" OR {hr}) AND {cox}) AND

SUBJAREA(medi) AND

PUBYEAR > 1999 AND PUBYEAR < 2021 AND

(LIMIT-TO(SRCTYPE,"j")) AND

(LIMIT-TO(PUBSTAGE,"final")) AND

(LIMIT-TO(DOCTYPE,"ar")) AND

(LIMIT-TO(LANGUAGE,"English"))

Only fully published (line 5) articles (line 6) from a journal (line 4) written in English (line

7) were considered. Furthermore, the results had to belong to the field of medicine (line 2)

and be published between the years 2000 and 2020, inclusive (line 3). Lastly, the abstracts

of the results needed to contain the keywords “hazard ratio” or “HR” and the keyword

“Cox”, ignoring case (line 1). Note, however, that this search query was generic such that

it did not restrict the results towards one of the nine subfields. The Scopus query yielded
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Subfield N journals N studies N studies N studies

allocated matched considered

Anesthesiology and 44/132 360 215 211

pain medicine

Cardiology and 230/366 10, 718 6, 555 6, 504

cardiovascular medicine

Gastroenterology 88/157 2, 088 1, 311 1, 300

Hematology 66/134 1, 601 857 849

Immunology and allergy 82/214 1, 360 839 833

Neurology 178/387 2, 840 1, 651 1, 640

Oncology 239/373 13, 163 7, 741 7, 684

Psychiatry and 159/560 1, 750 1, 038 1, 029

mental health

Pulmonary and 84/146 2, 551 1, 561 1, 548

respiratory medicine

All 1, 170/2, 469 36, 431/59, 646 21, 768 21, 598

Table 1

Number of used journals and studies for each of the nine subfields within biomedicine. The

first column indicates the subfield, the second column the number of used (i.e., matched

between Scopus data and Scimago data) journals (not necessarily unique) from all Scimago

journals, the third column the number of studies allocated, the fourth column the number of

studies for which there was a match and data extraction was successful, and the fifth

column the number of studies remaining after excluding studies that provide flawed results.

59, 669 results, of which 23 could not be exported, leaving 59, 646 results in total (see

column 3 of Table 1).
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The 59, 646 Scopus results were allocated to the nine subfields by matching the

journal names indicated by Scopus to the Scimago lists of journal names for the nine

subfields. Importantly, a Scopus result could be allocated to multiple subfields as some

subfields had journals in common. Before the allocation of Scopus results to the nine

subfields, both the Scopus journal names and the Scimago lists of journal names were

cleaned and standardized in order to accommodate slight differences in their presentation.

This included replacing “&amp;” and “&” with “AND”, removing all characters that are

not alphabetic or white space, repositioning the word “the” (e.g., “Lancet Oncology, The”

was turned into “The Lancet Oncology”), and transforming all characters to uppercase.

The number of matched journal names relative to the total number of Scimago journal

names for the nine subfields are shown in column 2 of Table 1 and the number of allocated

results for each of the nine subfields can be seen in column 3 of Table 1.

Once the individual Scopus results were allocated to the nine subfields, we extracted

hazard ratios and associated x% confidence intervals from the abstracts of the results. This

was done in an automatic fashion through the use of regular expressions (see Friedl, 2006,

for the standard reference on regular expressions). We extracted the following information

from the abstracts:

• Hazard ratio (HR)

• Confidence level of the confidence interval (CI) for HR (i.e., 100 (1 − α))

• Lower boundary of the CI for HR (HRl)

• Upper boundary of the CI for HR (HRu)

There are several important details about our implemented text-mining procedure.

First, we exclusively considered the abstracts for data extraction. Second, if the regular

expression yielded multiple matches for a given abstract, only the first match was

considered; any other matches were discarded. The justification for this decision was that
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we assumed that the main findings are commonly reported first, followed by secondary or

exploratory findings.

Third, data extraction was only done when all of the four above-mentioned

information were available in the abstract. We disregarded abstracts where results were not

complete or were presented in any other form. For instance, presentations of a HR coupled

with a p-value and potentially a test statistic were ignored. Although this seems like an

overly drastic measure, the number of matches was still very high (see column 4 of

Table 1). Fourth, we did not distinguish between variations of Cox regression (e.g.,

multivariate, stratified, multiple predictors).

Fifth, we allowed various forms of the displayed results. For example, the following

variations were all captured by our regular expression: “HR = 2.3” (with or without spaces

around =), “hazard ratio = 2.3”, “hazards ratio = 2.3”, “hazard ratios = 2.3”,

“hazard ratio (HR) = 2.3”, “hazards ratio [HR] = 2.3”, “HR : 2.3”, “H.R. : 2.3”, and many

more. Thus, we attempted to make the regular expression as flexible as possible, so that it

could capture the maximum amount of valid text, while still maintaining a healthy level of

restrictions. For more details, please consult our code, available at https://osf.io/ua4ys/.

In total, we were able to extract data for 21, 768 out of 36, 431 results (see column 4 of

Table 1).

We applied additional checks on the extracted data to make sure that both the

regular expression worked properly and the information in the abstracts themselves was

correct. As a first step, we checked whether the confidence level of the CI was between 0

and 100. Second, we tested whether HR, HRl, and HRu were higher than 0 (because the

possible range goes from 0 to ∞). Third, we examined whether the log HR was

approximately (because of rounding) in the middle of HRl and HRu. Here, we also

excluded results where the log HR and at least one of HRl or HRu had the same value due

to rounding. Any extracted data that did not fulfill all of these criteria was discarded.

Column 5 of Table 1 shows that for all nine subfields only a small number of extracted
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data had to be excluded (170 out of 21, 768 in total), leaving a final number of considered

results of 21, 598.

With this step completed, the nine subfields and their hazard ratios and associated

x% confidence intervals were considered separately. For each study i in i ∈ {1, 2, . . . , N}

within one of the nine subfields (where N is the number of studies within one of the nine

subfields), the extracted HRi was log-transformed (bi). Also, the standard error of bi was

calculated based on the confidence interval (e.g., Higgins et al., 2019) of HR (i.e., HRl
i and

HRu
i ):

SE (bi) = log HRu
i − log HRl

i

2z∗
i

, (6)

where z∗
i = Q (1 − αi/2) and Q (.) is the quantile function of the standard Normal

distribution. The sign of bi, however, is meaningless because it depends on how the

independent variable is coded. For instance, commonly the control condition is coded with

0 and the experimental condition with 1; occasionally, the opposite is the case, which

would reverse the sign of bi. Therefore, we “mirrored” bi, so that we have both −bi and bi:

ωi = {−bi, bi} (7)

and the corresponding standard errors:

θi = {SE (bi) , SE (−bi)} . (8)

The calculated ω and θ within a subfield could then be used for the construction of

a prior for each subfield separately. We decided to use the Normal distribution for the

prior. To obtain a prior, we combined the mirrored data through pooling (e.g., Higgins

et al., 2019). Using this procedure, the individual values in ω and θ were treated as coming

from separate samples that were combined into a single pooled sample. One desirable

feature of this pooling method is that ω values with higher θ are central to (rather than

discarded for) the calculation of the pooled standard error. In other words, the θ around

the ω values had a direct influence on the calculation of the pooled standard error: All else
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being equal, the higher the θ of a sample, the more it would increase the pooled standard

error. We deemed this behavior desirable since we wanted the prior to reflect uncertainty.

The resulting mean and standard error of a single pooled sample served as the mean and

standard deviation of the prior.

We decided against using the inverse-variance weighting procedure that is

commonly used in meta-analyses (see, e.g., Borenstein et al., 2021). The reason for this

was that the prior would get increasingly narrow as the corpus of considered studies

increases. In addition, effect sizes with high θ values have a relatively low influence (they

are less diagnostic in determining the mean), which was undesirable for our purposes of

trying to estimate the spread of the prior. Also, we decided to not use the partly empirical

Bayes procedure described in van Zwet and Gelman (2022) because the nature of it

prescribes that the current data (i.e., not only the corpus of prior studies) is used to

determine the prior.

Using the pooling method, determining the mean of the prior was redundant

because it was always 0 due to the mirrored nature of our data. However, in principle, the

mean µp of the prior can be calculated as follows (see Higgins et al., 2019):

µp =
∑K

j=1 njωj∑K
j=1 nj

, (9)

upon which the standard deviation of the prior σp can be calculated:

σp =

√√√√√
(∑K

j=1 (nj − 1) θ2
j

)
+

(∑K
j=1 nj (ωj − µp)2

)
(∑K

j=1 nj

)
− 1

, (10)

Here, j ∈ {1, 2, . . . , K} is an index of the mirrored data ω and θ, which both have length

K = 2N . In essence, Equation 10 sums up the squared standard errors θ2
j and it sums up

the squared deviations of ωj from the pooled mean µp. Thus, all else being equal, σp

increases as θj increases and as (ωj − µp)2 increases. Note that our extracted information

did not provide information on the sample size nj within each study. We used an arbitrary

sample size of n = 200 for all nj, but we tested whether the choice of nj had an influence
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on the calculation of σp. Specifically, we varied nj with nj = n ∈ {10, 11, . . . , 10000}, so

that all studies had the same sample size, and applied Equation 10. In order to verify the

robustness of the assumption of equal sample size per study, we randomly varied nj across

studies, so that nj in Equation 10 could take on values sampled from U (10, 10000). We

repeated this procedure 100, 000 times to accommodate many possible arrangements of nj.

Results

The results for the construction of the Normal priors for the nine subfields through

the pooling method (Higgins et al., 2019) can be seen in Figure 2. The panels represent the

nine subfields. Histograms show the distributions of ω for the different corpora,

independent of θ. The red curves show the priors resulting from the application of the

pooling method (Higgins et al., 2019).

For all nine subfields, the center of the Normal prior was located at µp = 0 as a

necessary consequence of our decision to mirror the data. The more interesting parameter

of the Normal prior is the standard deviation σp because it reflects both the effect sizes and

the uncertainties around them based on past studies within a subfield. From the

histograms and the Normal priors it can be seen that the effect sizes, and therefore also the

Normal priors, were similar across the nine subfields. σp ranged between 0.915 for

“Psychiatry and mental health” and 1.079 for “Gastroenterology”.

Since the calculation of σp through the pooling method (Higgins et al., 2019) was

based on an arbitrary choice of nj = n = 200 that was the same for all studies within a

corpus of a specific subfield, we also investigated the dependence of σp on nj. Figure 3

shows this dependence, where the panels represent the different subfields. The curves

represent the variation of σp as a function of nj = n, which was the same across all studies

within a specific corpus of a subfield. The box plots represent the variation of σp as a

function of nj, where nj for each study j was sampled from U (10, 10000) (i.e., different

sample sizes were possible across studies), over 100, 000 repetitions.

When assuming that nj across studies are equivalent, only small variations in σp
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Histograms of  ω with corresponding  N(0, σp)  priors
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Figure 2

Prior distributions for the nine subfields, one subfield per panel. The histograms show the

distribution of ω (i.e., ignoring θ). The red curves display the densities of the Normal

priors on β, where σp is presented at the top of each panel.

were observed, as shown by the curves. For small nj, σp was smaller compared to when nj

was large. In the limit of nj, σp seems to reach an asymptote. However, the assumption

that sample sizes are equal across studies is overly unrealistic and simplistic. When nj were

allowed to vary across studies, a larger variation in σp was observed, as shown by the box
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Standard deviations of  N(0, σp)  priors as a function of  nj
σp
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Figure 3

Sensitivity of the pooling method with respect to the choice of nj for the estimation of σp.

The nine panels correspond to the nine subfields. The curves display σp of the priors as a

function of nj = n (i.e., all studies have the same sample size). The box plots show σp of

the priors when each nj is drawn randomly from U (10, 10000) (i.e., studies have different

sample sizes); this process was repeated 100, 000 times.

plots. Still, the variation in σp was not radical enough to question our heuristic of using

nj = 200 for all studies within a corpus of a subfield.
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Drug b SE (b)

Pertuzumab −0.443 0.159

Ribociclib −0.293 0.191

Alpelisib −0.315 0.212

Abemaciclib −0.158 0.182

Tucatinib −0.412 0.142

Table 2

Drug names and corresponding b coefficients and SE (b) for the considered trials.

Example Application

To illustrate the application of one of the nine priors (i.e., the prior for “Oncology”),

we conducted a Bayesian fixed-effect meta-analysis of clinical trials investigating the

effectiveness of novel cancer drugs that are approved by the Food and Drug Administration

(FDA; for the CEIT-Cancer project see Ladanie et al., 2018). All of the studies included in

the meta-analysis consisted of Cox regressions. We used data provided by and described in

Pittelkow et al. (2023, available at https://osf.io/qz7xy/). Our goal was to estimate the

evidence for or against the effectiveness of medications for the treatment of breast cancer.

Note, however, that our analysis should be interpreted as a mere demonstration or proof of

concept only, rather than a thorough meta-analysis with meaningful and robust results.

For our Bayesian fixed-effect meta-analysis, we only considered randomized

controlled trials that were double-blinded and that contained a placebo control (i.e., not an

active control). Further, we only considered “overall survival” (i.e., not “progression-free

survival” or “tumor response”) as an outcome measure and exclusively included trials

investigating breast cancer. This yielded a total of five trials. The b coefficients and the

corresponding standard errors can be found in Table 2.

We conducted our Bayesian fixed-effect meta-analysis using the “metaBMA” R
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package (Heck et al., 2019).

> library("metaBMA")

We defined the prior on the effect size β, which is one-sided negative because our

alternative hypothesis states that the hazard is lower in the treatment compared to the

control condition (i.e., H1 : β < 0).

> onc_prior <- prior(family = "norm",

> param = c(mean = 0,

> sd = 0.968),

> upper = 0)

Subsequently, we defined the variables for the b coefficients and corresponding standard

errors and conducted the fixed-effect meta-analysis.

> b <- c(-0.443, -0.293, -0.315, -0.158, -0.412)

> b_se <- c(0.159, 0.191, 0.212, 0.182, 0.142)

>

> mod <- meta_fixed(y = b,

> SE = b_se,

> d = onc_prior)

The results indicate that BF10 = 2, 887, suggesting decisive evidence (Jeffreys, 1961; Kass

& Raftery, 1995) in favor of the overall effectiveness of drugs for breast cancer.

> mod$bf

# (denominator)

# (numerator) fixed_H0 fixed_H1

# fixed_H0 1.00 0.0003463491

# fixed_H1 2887.26 1.0000000000

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.04.23295029doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.04.23295029
http://creativecommons.org/licenses/by-nc-nd/4.0/


PRIORS IN COX REGRESSION 22

Discussion

Survival analysis, and in particular Cox regression (Cox, 1972), is an indispensable

statistical tool for biomedical research. The ubiquitous frequentist framework is limited in

that it cannot quantify evidence in favor of the null hypothesis that there is no effect

(Rouder et al., 2009) and in that it does not allow continuing or stopping data collection

based on interim analyses (Armitage et al., 1969; Rouder, 2014; Schönbrodt &

Wagenmakers, 2018; Schönbrodt et al., 2017; Stefan, Schönbrodt, et al., 2022; Tendeiro

et al., 2022). Bayes factors remedy these shortcomings and permit intuitive interpretations.

Nevertheless, the specification of priors that are required for Bayesian analyses can be

difficult.

In this paper, we have developed priors for the β parameter in Cox regression for

nine subfields in biomedicine (see column 1 in Table 1). These priors were informed by

large corpora of already existing studies within the respective subfields and therefore

provide reasonable approximations to the to-be-expected effect sizes and uncertainties

thereof. For all nine subfields, we decided to use a Normal prior, which is centered on

µp = 0. We found very similar standard deviations for the Normal priors across the nine

subfields, ranging from σp = 0.915 for “Psychiatry and mental health” to σp = 1.079 for

“Gastroenterology”, suggesting considerable similarities across subfields. Since our

developed priors differ only slightly across the nine subfields, we believe that it is

reasonable to use a standard Normal prior (i.e., N (0, 1)) for all nine subfields, forming a

compromise among the nine individual priors, as a starting point. Still, any choice of prior

is always arbitrary to some degree. Therefore, we urge researchers to complement their

analysis using a specific prior with sensitivity analyses (e.g., Berger et al., 1994; Depaoli &

van de Schoot, 2017; Du et al., 2019; Kruschke, 2015), in which parameters of the prior are

systematically varied and even entirely different (reasonable) priors are chosen, in order to

examine the robustness of the resulting Bayes factors.

We caution the reader to not take our proposed priors to be set in stone. The choice
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of prior always depends to some extent on the goals of the researcher. For example, it

might not always be desirable for the prior to accurately reflect expected effects.

Sometimes, the focus might be on ensuring sufficient shrinkage of the parameter estimate

(e.g., Park & Casella, 2008; van Erp et al., 2019; van Zwet & Gelman, 2022).

Moreover, our process of arriving at the priors contained decisions, assumptions,

and heuristics that might be questioned. First, the allocation of the articles to the nine

subfields based alone on the journal is a drastic heuristic. A proportion of the articles is

therefore probably classified into the wrong subfield. Second, the regular expression that

we created to extract hazard ratios and associated x% confidence intervals from the

abstracts of the articles might have been biased to some extent. Some journals have very

specific reporting guidelines for the abstracts, which might not have been captured by our

regular expression. Thus, it is possible that certain journals were systematically

underrepresented in our results. Third, we only matched abstracts where a hazard ratio is

combined with a confidence interval but not abstracts where a hazard ratio is combined

with a p-value. We made this decision because p-values often do not map directly onto the

confidence intervals. Additional information on how the p-value was calculated would be

needed, which is rarely available in abstracts. Fourth, for the Cox regression analyses, we

did not differentiate between different types of predictors (e.g., categorical, continuous) and

types of analyses (e.g., stratified, multivariate), leaving open the possibility that certain

nuances are ignored by our calculations.

It is clear that our proposed priors for Bayesian Cox regressions are very generic,

such that one individual prior accommodates an entire subfield (or even all nine subfields if

we are willing to accept the standard Normal prior). These priors might still be

appropriate approximations for smaller specializations within subfields. However, in these

cases it might be worthwhile to obtain more informed and precise priors that are tailored

to these smaller subfields.
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Conclusion

The analysis of time-to-event data with Cox regression (Cox, 1972) is pervasive in

biomedical research. Cox regression combined with Bayes factors has much to offer over

traditional frequentist inference because it allows researchers to directly contrast the

evidence for the null and alternative hypotheses (Rouder et al., 2009) and because it allows

monitoring results during data collection and continue or stop at any time (Armitage et al.,

1969; Rouder, 2014; Schönbrodt & Wagenmakers, 2018; Schönbrodt et al., 2017; Stefan,

Schönbrodt, et al., 2022; Tendeiro et al., 2022). These characteristics of Bayes factors have

the potential to reduce the waste of scarce resources in biomedical research and especially

clinical trials (Macleod et al., 2014; van Ravenzwaaij et al., 2019). However, the

specification of priors for these Bayesian analyses can be challenging and be perceived as

overly subjective. We propose default priors in Cox regression that are informed by large

corpora of already existing studies for nine subfields. These priors are all Normal

distributions centered on 0 with standard deviations that are close to 1. They can be used

as a default or starting point for medical researchers and can be augmented with sensitivity

analyses.
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