An explainable AI framework for interpretable biological age
View ORCID ProfileWei Qiu, View ORCID ProfileHugh Chen, View ORCID ProfileMatt Kaeberlein, View ORCID ProfileSu-In Lee
doi: https://doi.org/10.1101/2022.10.05.22280735
Wei Qiu
1Paul G. Allen School of Computer Science and Engineering, University of Washington
Hugh Chen
1Paul G. Allen School of Computer Science and Engineering, University of Washington
Matt Kaeberlein
2Department of Laboratory Medicine and Pathology, University of Washington
Su-In Lee
1Paul G. Allen School of Computer Science and Engineering, University of Washington
Data Availability
The study used openly available human data from NHANES (https://www.cdc.gov/nchs/nhanes/index.htm) and UK Biobank (https://www.ukbiobank.ac.uk/)
Posted October 06, 2022.
An explainable AI framework for interpretable biological age
Wei Qiu, Hugh Chen, Matt Kaeberlein, Su-In Lee
medRxiv 2022.10.05.22280735; doi: https://doi.org/10.1101/2022.10.05.22280735
Subject Area
Subject Areas
- Addiction Medicine (386)
- Allergy and Immunology (701)
- Anesthesia (193)
- Cardiovascular Medicine (2859)
- Dermatology (244)
- Emergency Medicine (431)
- Epidemiology (12569)
- Forensic Medicine (10)
- Gastroenterology (807)
- Genetic and Genomic Medicine (4447)
- Geriatric Medicine (402)
- Health Economics (716)
- Health Informatics (2856)
- Health Policy (1050)
- Hematology (376)
- HIV/AIDS (893)
- Medical Education (415)
- Medical Ethics (114)
- Nephrology (464)
- Neurology (4201)
- Nursing (223)
- Nutrition (617)
- Oncology (2205)
- Ophthalmology (626)
- Orthopedics (254)
- Otolaryngology (319)
- Pain Medicine (269)
- Palliative Medicine (83)
- Pathology (488)
- Pediatrics (1172)
- Primary Care Research (483)
- Public and Global Health (6787)
- Radiology and Imaging (1494)
- Respiratory Medicine (902)
- Rheumatology (430)
- Sports Medicine (369)
- Surgery (473)
- Toxicology (57)
- Transplantation (202)
- Urology (174)