Prediction of severe COVID-19 infection at the time of testing: A machine learning approach
Faraz Khoshbakhtian, Ardian Lagman, Dionne M. Aleman, Randy Giffen, Proton Rahman
doi: https://doi.org/10.1101/2021.10.15.21264970
Faraz Khoshbakhtian
1Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
Ardian Lagman
1Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
Dionne M. Aleman
1Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
Randy Giffen
2IBM Canada, Toronto, ON, Canada
Proton Rahman
3Eastern Health, Newfoundland & Labrador, Canada
Data Availability
Data is not available due to ethical requirements
Posted October 18, 2021.
Prediction of severe COVID-19 infection at the time of testing: A machine learning approach
Faraz Khoshbakhtian, Ardian Lagman, Dionne M. Aleman, Randy Giffen, Proton Rahman
medRxiv 2021.10.15.21264970; doi: https://doi.org/10.1101/2021.10.15.21264970
Subject Area
Subject Areas
- Addiction Medicine (383)
- Allergy and Immunology (699)
- Anesthesia (192)
- Cardiovascular Medicine (2853)
- Dermatology (244)
- Emergency Medicine (430)
- Epidemiology (12561)
- Forensic Medicine (10)
- Gastroenterology (806)
- Genetic and Genomic Medicine (4434)
- Geriatric Medicine (402)
- Health Economics (716)
- Health Informatics (2850)
- Health Policy (1049)
- Hematology (375)
- HIV/AIDS (893)
- Medical Education (413)
- Medical Ethics (114)
- Nephrology (462)
- Neurology (4194)
- Nursing (222)
- Nutrition (617)
- Oncology (2204)
- Ophthalmology (624)
- Orthopedics (254)
- Otolaryngology (318)
- Pain Medicine (268)
- Palliative Medicine (82)
- Pathology (486)
- Pediatrics (1172)
- Primary Care Research (483)
- Public and Global Health (6783)
- Radiology and Imaging (1490)
- Respiratory Medicine (900)
- Rheumatology (430)
- Sports Medicine (369)
- Surgery (473)
- Toxicology (57)
- Transplantation (202)
- Urology (174)