Predicting Long-term Evolution of COVID-19 by On-going Data using Bayesian Susceptible-Infected-Removed Model
View ORCID ProfileShohei Hidaka, Takuma Torii
doi: https://doi.org/10.1101/2020.05.08.20094953
Shohei Hidaka
Japan Advanced Institute of Science and Technology (JAIST)
Takuma Torii
Japan Advanced Institute of Science and Technology (JAIST)
Data Availability
This study uses the data repository provided by Johns Hopkins CSSE accessed on April 23rd in 2020.
Posted May 12, 2020.
Predicting Long-term Evolution of COVID-19 by On-going Data using Bayesian Susceptible-Infected-Removed Model
Shohei Hidaka, Takuma Torii
medRxiv 2020.05.08.20094953; doi: https://doi.org/10.1101/2020.05.08.20094953
Subject Area
Subject Areas
- Addiction Medicine (399)
- Allergy and Immunology (710)
- Anesthesia (201)
- Cardiovascular Medicine (2949)
- Dermatology (249)
- Emergency Medicine (440)
- Epidemiology (12754)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4588)
- Geriatric Medicine (419)
- Health Economics (729)
- Health Informatics (2921)
- Health Policy (1069)
- Hematology (389)
- HIV/AIDS (924)
- Medical Education (426)
- Medical Ethics (115)
- Nephrology (469)
- Neurology (4366)
- Nursing (236)
- Nutrition (640)
- Oncology (2273)
- Ophthalmology (647)
- Orthopedics (258)
- Otolaryngology (325)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (501)
- Pediatrics (1197)
- Primary Care Research (496)
- Public and Global Health (6947)
- Radiology and Imaging (1529)
- Respiratory Medicine (915)
- Rheumatology (438)
- Sports Medicine (385)
- Surgery (489)
- Toxicology (60)
- Transplantation (212)
- Urology (181)