Predicting Long-term Evolution of COVID-19 by On-going Data using Bayesian Susceptible-Infected-Removed Model
View ORCID ProfileShohei Hidaka, Takuma Torii
doi: https://doi.org/10.1101/2020.05.08.20094953
Shohei Hidaka
Japan Advanced Institute of Science and Technology (JAIST)
Takuma Torii
Japan Advanced Institute of Science and Technology (JAIST)
Article usage
Posted May 12, 2020.
Predicting Long-term Evolution of COVID-19 by On-going Data using Bayesian Susceptible-Infected-Removed Model
Shohei Hidaka, Takuma Torii
medRxiv 2020.05.08.20094953; doi: https://doi.org/10.1101/2020.05.08.20094953
Subject Area
Subject Areas
- Addiction Medicine (399)
- Allergy and Immunology (710)
- Anesthesia (201)
- Cardiovascular Medicine (2949)
- Dermatology (249)
- Emergency Medicine (440)
- Epidemiology (12754)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4588)
- Geriatric Medicine (419)
- Health Economics (729)
- Health Informatics (2921)
- Health Policy (1069)
- Hematology (389)
- HIV/AIDS (924)
- Medical Education (426)
- Medical Ethics (115)
- Nephrology (469)
- Neurology (4366)
- Nursing (236)
- Nutrition (640)
- Oncology (2273)
- Ophthalmology (647)
- Orthopedics (258)
- Otolaryngology (325)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (501)
- Pediatrics (1197)
- Primary Care Research (496)
- Public and Global Health (6947)
- Radiology and Imaging (1529)
- Respiratory Medicine (915)
- Rheumatology (438)
- Sports Medicine (385)
- Surgery (489)
- Toxicology (60)
- Transplantation (212)
- Urology (181)