Government Responses Matter: Predicting Covid-19 cases in US using an empirical Bayesian time series framework
Ziyue Liu, Wensheng Guo
doi: https://doi.org/10.1101/2020.03.28.20044578
Ziyue Liu
1Indiana University, Indianapolis, IN,USA,
Wensheng Guo
2University of Pennsylvania, Philadelphia, PA, USA,
Data Availability
Data and Matlab code for this manuscript are included as a supplement.
Posted March 30, 2020.
Government Responses Matter: Predicting Covid-19 cases in US using an empirical Bayesian time series framework
Ziyue Liu, Wensheng Guo
medRxiv 2020.03.28.20044578; doi: https://doi.org/10.1101/2020.03.28.20044578
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (714)
- Anesthesia (209)
- Cardiovascular Medicine (2986)
- Dermatology (254)
- Emergency Medicine (446)
- Epidemiology (12843)
- Forensic Medicine (12)
- Gastroenterology (838)
- Genetic and Genomic Medicine (4650)
- Geriatric Medicine (427)
- Health Economics (735)
- Health Informatics (2957)
- Health Policy (1076)
- Hematology (394)
- HIV/AIDS (937)
- Medical Education (430)
- Medical Ethics (116)
- Nephrology (478)
- Neurology (4437)
- Nursing (239)
- Nutrition (653)
- Oncology (2308)
- Ophthalmology (655)
- Orthopedics (260)
- Otolaryngology (327)
- Pain Medicine (284)
- Palliative Medicine (85)
- Pathology (504)
- Pediatrics (1204)
- Primary Care Research (506)
- Public and Global Health (7036)
- Radiology and Imaging (1557)
- Respiratory Medicine (926)
- Rheumatology (447)
- Sports Medicine (387)
- Surgery (493)
- Toxicology (60)
- Transplantation (213)
- Urology (186)