Abstract
Since the Covid-19 outbreak, researchers have been predicting how the epidemic will evolve, especially the number in each country, through using parametric extrapolations based on the history. In reality, the epidemic progressing in a particular country depends largely on its policy responses and interventions. Since the outbreaks in some countries are earlier than United States, the prediction of US cases can benefit from incorporating the similarity in their trajectories. We propose an empirical Bayesian time series framework to predict US cases using different countries as prior reference. The resultant forecast is based on observed US data and prior information from the reference country while accounting for different population sizes. When Italy is used as prior in the prediction, which the US data resemble the most, the cases in the US will exceed 300,000 by the beginning of April unless strong measures are adopted.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.