Abstract
Cardiovascular and respiratory diseases (CVRD) are the leading causes of death worldwide. The construction of health digital twins for patient monitoring is becoming a fundamental tool to reduce invasive procedures, lower healthcare costs, minimize patient hospitalization, design clinical trials and personalize therapies. The aim of this study is to investigate the feasibility of machine learning-based monitoring of healthy subjects and CVRD patients in an in silico context. In particular, a population of virtual subjects, both healthy and with CVRD, was created using a comprehensive zero-dimensional global closed-loop model. Then, we trained Gaussian process regression (GPR) models, informed by wearable-acquired data, to predict variables normally acquired with invasive or operator-dependent methods. Presented results demonstrate, in an in silico setting, the feasibility of GRP-based prediction of in-hospital variables from wearable-derived indexes.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Project funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 1031 of 17/06/2022 of Italian Ministry for University and Research funded by the European Union - NextGenerationEU (proj.nr. CN_00000013)
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.