Abstract
Given the global increase in antibiotic resistance, new effective strategies must be developed to treat bacteria that do not respond to first or second line antibiotics. One novel method uses bacterial phage therapy to control bacterial populations. Phage viruses replicate and infect bacterial cells and are regarded as the most prevalent biological agent on earth. This paper presents a comprehensive model capturing the dynamics of wild-type bacteria (S), antibiotic-resistant bacteria (R), and infective (I) strains, incorporating virus inclusion. Our model integrates biologically relevant parameters governing bacterial birth rates, death rates, and mutation probabilities and incorporates infection dynamics via contact with a virus. We employ an optimal control approach to study the influence of virus inclusion on bacterial population dynamics. Through numerical simulations, we establish insights into the stability of various system equilibria and bacterial population responses to varying infection rates. By examining the equilibria, we reveal the impact of virus inclusion on population trajectories, describe a medical intervention for antibiotic-resistant bacterial infections through the lense of optimal control theory, and discuss how to implement it in a clinical setting. Our findings underscore the necessity of considering virus inclusion in antibiotic resistance studies, shedding light on subtle yet influential dynamics in bacterial ecosystems.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Email address: zod20{at}fsu.edu (Zainab Dere)
1 The death rates are not explicitly required since the logistic term accounts for death as well. We include this term to make the model amenable for future modifications, such as including antibiotic treatment.
2 Using a quadratic term facilitates onset of continuous control, whereas employing a linear term results in discontinuous bang-bang control
Data Availability
All data produced in the present work are contained in the manuscript