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Abstract

Given the global increase in antibiotic resistance, new effective strategies must be developed to treat bacteria
that do not respond to first or second line antibiotics. One novel method uses bacterial phage therapy to
control bacterial populations. Phage viruses replicate and infect bacterial cells and are regarded as the most
prevalent biological agent on earth. This paper presents a comprehensive model capturing the dynamics
of wild-type bacteria (S), antibiotic-resistant bacteria (R), and infective (I) strains, incorporating virus
inclusion. Our model integrates biologically relevant parameters governing bacterial birth rates, death
rates, and mutation probabilities and incorporates infection dynamics via contact with a virus. We employ
an optimal control approach to study the influence of virus inclusion on bacterial population dynamics.
Through numerical simulations, we establish insights into the stability of various system equilibria and
bacterial population responses to varying infection rates. By examining the equilibria, we reveal the impact
of virus inclusion on population trajectories, describe a medical intervention for antibiotic-resistant bacterial
infections through the lense of optimal control theory, and discuss how to implement it in a clinical setting.
Our findings underscore the necessity of considering virus inclusion in antibiotic resistance studies, shedding
light on subtle yet influential dynamics in bacterial ecosystems.

Keywords: Antibiotic resistance, Optimal control, Stability analysis

1. Introduction

Bacteria are microorganisms that are composed of a single cell. They are widely distributed in nature
and cause a range of infections and also play an essential role in human health [1]. Beneficial bacteria can be
found in the gastrointestinal tract, where they support the digestive system and aid healthy development of
the immune system. Bifidobacteria and E. coli are examples of healthy bacteria found in the intestine which
break down complex carbohydrates and also improve gut health [2]. Mutations in the DNA of a bacteria
may occur due to mistakes when bacterial cells undergo binary fission [1, 3] and can sometimes alter the
functioning of its genes, leading to changes in their phenotype. These mutations facilitate the emergence
of diversity within its population, which may improve the capacity of the bacteria to adapt to its changing
environment [4–7]. When mutations occur in bacteria important for human health, harmful infections
could arise. Typical treatment for such pathogenic bacterial infection involves antibiotics. However, some
mutations render bacteria antibiotic-resistant, making it difficult to treat infections. Other mutations make
bacteria more virulent or more easily transmissible [8–10].

Antibiotic resistance in bacteria is a growing problem in public health, as it is increasingly harder to treat
infections caused by mutant antibiotic-resistant bacteria [3, 11]. The scourge of antibiotic-resistant genes
among microbial pathogens poses a serious threat to the effectiveness of current antimicrobial treatments,
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particularly for severe bacterial infections leading to sepsis [12]. The progressive emergence of antimicrobial
resistance (AMR) has been driven by the use of anti-infection treatments in humans, animals, and food
production [10, 13]. This has been further compounded by the inadequacy of measures designed to curtail
the infections [13]. According to the World Health Organization (WHO), antibiotic resistance has significant
economic cost implications as a result of prolonged illnesses and longer hospital stays which could lead to
death or disability [14]. Two central factors that drive antimicrobial resistance are the volume of antimicro-
bials used and the spread of resistant micro-organisms and genes encoding for resistance [15]. These factors
can both be controlled through preventative measures. A central goal of infection bacteriology is thus to
identify aspects of bacterial ecology to mitigate infection and develop novel treatments.

Mathematical models have been historically successful in capturing essential features of infective microbes
to predict infection dynamics. These models have significantly advanced our understanding of infectious dis-
eases, their transmission, and the development of new treatments. Jenner et al. [16] and Xavier et al. [17]
both highlight the crucial role of innovative mathematical and computational modeling techniques in pre-
dicting disease outbreaks and designing containment strategies. Mathematical models have also been used
to study the evolution of infectious microbes, including their adaptation to host immune systems and the
emergence of new strains [18], which has helped to inform the development of new vaccines and drugs.
Several authors have considered the mathematical modeling of antimicrobial resistance with different objec-
tives. For example, Ibargüen-Mondragón et al. [19] proposed an ODE model for the concurrent acquisition
of resistance to bactericidal and bacteriostatic antibiotics, where resistance is generated by specific changes
in bacterial DNA sequence and plasmid transmission. The model showed that applying appropriate ther-
apies and stimulating the immune system is the best way to eliminate progression to resistance for many
bacterial infections. Alavez-Ramı́rez et al. [20] presented a model for the emergence of resistance of My-
cobacterium tuberculosis bacteria to antibiotics to assess the efficiency of administering one or two drugs
for controlling latent tuberculosis infection considering its dependence on strengths of the immune system.
Regarding AMR control, a number of studies have established results for the optimal control for bacterial
resistance. For managing bacterial populations with persister dynamics, Leenheer and Cogan [21] applied
the amount of antimicrobial as the control variable to predict the optimal timing and duration of antibiotic
treatment. Ibargüen-Mondragón et al. [22] formulated an optimal control problem to minimize the bacterial
population with plasmid-mediated antibiotic resistance, considering the action of both antibiotic treatment
and immune system to combat bacterial infections. Gutiérrez et al. [23] developed an approach for man-
aging bacterial populations with persistent dynamics. They offer a completely automated, high-throughput
approach that combines in-the-moment measurements with computer-controlled optogenetic manipulation
of bacterial growth to perform precise and reliable compositional control of a two-strain E. coli community.

From a deterministic perspective, we can single out other research focused on the acquisition of antibiotic
resistance: the causal factors underlying bacterial resistance is given in [24], analysis of bacterial behavior
in response to various antibiotic treatments in [25], [26], [27], optimum antibiotic use in [28], and modeling
of the acquisition of resistance from external sources in [29]. Both deterministic and stochastic models have
been used to study bacterial resistance mathematically. The interaction between antibiotic-sensitive and
antibiotic-resistant bacteria is studied mathematically by Mena et al. [30]. They formulated an optimal
control problem for an unperturbed and a perturbed system, where the control variable is prophylaxis.
Merdan et al. [31] compared mathematical models of bacterial resistance under random conditions with a
deterministic model including immune system response and antibiotic therapy. In [32], the authors applied
a stochastic population model to investigate the effect of resistance, persistence, and hyper-mutation on
antibiotic treatment failure and found that the relative impact of these factors depends on the antibiotic
concentration and the infection time scale.

In this paper, we will focus on the use of viruses to mitigate bacterial infection. Roach and Donovan [33]
explored the therapeutic applications of bacteriophage-derived proteins, such as endolysins and peptidogly-
can hydrolases, in animal models of bacterial infection. The potential of targeting bacterial virulence and
the use of bacteriophage-based approaches was highlighted in [34–36], as alternative strategies to combat
antibiotic resistance and control bacterial infections. Mekalanos et al. [37] explored how bacteriophages
can influence the dynamics of cholera outbreaks. The research showed that lytic bacteriophages, which
specifically target and destroy virulent strains of cholera-causing bacteria (Vibrio cholerae), can signifi-
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cantly reduce the severity of cholera outbreaks. Furthermore, in their study on bacteriophage-resistant and
bacteriophage-sensitive bacteria, Han and Smith [38] explored the population dynamics within a chemostat.
They found that while resistant bacteria may survive phage attacks, they are less efficient at competing for
nutrients compared to sensitive bacteria. This trade-off significantly influences their population dynamics
and persistence.

Mathematical modeling has been instrumental in understanding the dynamics and control of viral in-
fections, including the use of viruses to control bacterial infections [39]. Clifton et al. [40] demonstrated
that antibiotic-induced proviruses can play a role in controlling bacterial populations, expanding the under-
standing of phage-antibiotic synergy. Bacteriophages, viruses that only replicate in and infect bacterial cells,
are regarded as the most prevalent biological agent on earth and are found everywhere in the environment.
Styles et al. [41] emphasized the need for realistic mathematical models to improve the understanding of
bacteriophage, bacteria, and eukaryotic interactions, which is crucial for the development of phage ther-
apy. These studies collectively underscore the importance of mathematical modeling in exploring the use of
viruses to control bacterial infections. One challenge with phage therapy is that phages, like other pathogens,
are construed as “outsiders” by the human immune system and are eliminated in due time [42, 43]. Thus,
if phage therapy is unsuccessful once, the same phage therapy cannot be used to treat a given infected
individual. Using virotherapy to completely eliminate a given infection is possible but with a low chance of
success. However, this can be circumvented by using phages in combination with other antibacterial agents,
including other phages [43, 44].

Here, we hope to explore phage therapy with a mathematical model in a different capacity. Rather than
completely eliminating an infection, we seek to understand if introducing virus-infected bacteria can help
mitigate an infection indefinitely. We borrow from the concept in ecology known as apparent competition,
wherein the presence of multiple prey with a common predator prevents any single prey from being eliminated
[45]. If we consider wild-type bacteria and antibiotic-resistant bacteria as prey for a bacteriophage, the theory
of apparent competition stipulates that the mutant bacteria will not outgrow the wild-type bacteria. Thus,
infection may not be completely removed, but it can be controlled. In this paper, we describe the dynamics of
the interactions of antibiotic-sensitive and antibiotic-resistant bacteria with a user-controlled viral infection.
To this end, we formulate a mathematical model that consists of a nonlinear system of three ordinary
differential equations. These equations describe the interaction between populations of bacteria sensitive to
and resistant to antibiotics, along with the viral infection. With the goal of minimizing the population of
antibiotic resistant bacteria, we formulate an optimal control problem where the control variable is a proxy
for introducing virus-infected bacteria near the region of bacterial infection. The infection is user-controlled
as a mechanism to mitigate undesirable antibiotic resistant bacteria.

The study introduces a novel framework for understanding and optimizing control interventions in bacte-
rial ecosystems. By integrating optimal control techniques, dynamically exploring control strategies, quanti-
tatively assessing control impact, and elucidating long-term system behavior, we provide a holistic approach
to tackling antibiotic resistance and advancing our understanding of complex ecological dynamics with the
goal of reducing the antibiotic resistant population. Our work lays the foundation for progressing treatment
of antibiotic-resistant bacterial infection.

2. Model Formulation

Our model consists of three different strains of bacteria: wild-type (S), antibiotic-resistant (R), and the
infective (I) strains. It describes the interactions between them (see Figure 1). Analyzing this model will
provide insight into which biophysical parameters are key to affecting model output. Let S(t), R(t) and
I(t) be the densities (S,R, I > 0) of wild-type antibiotic bacteria, mutant antibiotic resistant bacteria, and
virus-infected bacteria, respectively. The interactions between them can be represented by the following
model:
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wild-type cell
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mutant cell

1− µµ
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with virus

Figure 1: Schematic of our model. (A) Wild-type cells undergo fission and with a probability µ produce mutants that are
antibiotic-resistant. (B)If mutants arise, then they will eventually dominate the population. This is undesirable. (C) We
hypothesize that adding viral infection promotes the ability for coexistence between the wild-type and mutant strains.

dS

dt
= 2λS(1− S +R+ I

K
)(1− µ)− 2βIS − δsS

dR

dt
= 2λS(1− S +R+ I

K
)µ+ 2γR(1− S +R+ I

K
)− 2βIR− δmR

dI

dt
= 2βIS + 2βIR− δiI + α,

(1)

where µ is the probability that a wild-type bacterial division results in an antibiotic-resistant mutation. We
assume µ depends on R: As R increases, the likelihood of horizontal gene transfer increases, yielding more
mutants. We therefore take µ to be an increasing function of R that saturates as R → ∞. We represent
this with a Hill function:

µ = µ0 + (1− µ0)
R

Z +R+ I
.

We assume a basal mutation probability µ0, which is the inherent likelihood of a mutation occurring
independent of the number of the antibiotic-resistant bacteria. The parameter Z is the half-activation
concentration. The birth rate and death rate of wild-type bacteria are λ and δs

1, respectively, and we
assume a logistic growth described by S(1 − S − R − I) with carrying capacity K. For the mutant strain,
the birth rate and death rate are characterized by γ and δm, respectively. Mutation of wild-type bacteria
leading to new resistant bacteria is represented with S(1 − S − R − I)µ. Our model forgoes explicit virus
dynamics and models infection via contact with infected bacteria. The rate at which we inject virus-infected
bacteria into the system is described by α, and β quantitates the infectivity of the viral infection. We assume
infection is a stronger contributor to infective cell growth than division—our model thus does not include
a term for infective cell birth [46, 47]. Including such a term does not qualitatively affect our results. The
death rate of infective cells is characterized by δi. Here, we assume all the model parameters λ, γ, β, δs,

1The death rates are not explicitly required since the logistic term accounts for death as well. We include this term to make
the model amenable for future modifications, such as including antibiotic treatment.
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δm, δi are positive and that all the initial conditions of model system (1) satisfy S(0), R(0), I(0) ≥ 0. For
simplicity, we set K = 1 for the rest of the paper. Other parameter values are given in Table 1. Unless
otherwise noted, these are the values used throughout the paper.

We note that Eq. (1) can be derived systematically from a lattice-based microscopic spatial stochastic
model of bacterial dynamics. In such a model, each lattice site is occupied by a wild-type, mutant, or
infective bacterial cell or is vacant. Division and infection events characterize the reactions that describe the
stochastic evolution of the microscopic configurations of the lattice. By invoking a mean field approximation
and a macroscopic limit, one can derive Eq. (1) [7, 48]. We will explore this stochastic lattice model in detail
as a subject of future work.

Parameters Description Value Source

λ Growth rate of the antibiotic-wild-type bacteria S 0.8 day−1 [49]
γ Growth rate of antibiotic-resistant bacteria R 0.4 day−1 [50]
µ0 The rate of mutation of S bacteria cells into R 10−8 day−1 [51]
α The rate of injection of virus-infected bacteria into the system [0, 1] conc·day−1 Assumed
β Infection rate of virus-infected bacteria I 0.98 day−1 [52]
δs Death rate of S 0.312 day−1 [53]
δm Death rate of R 0.312 day−1 [53]
δi Death rate of I 2.5 day−1 Assumed

Table 1: Description of parameters used.

To understand what biophysical parameters promote reaching desirable stationary states, we next com-
pute the equilibria of Eqs. (1) and determine their stability in the absence of the control α (α = 0). Then,
using α as our control variable, we will apply optimal control to the system to determine how to tune α
in time to minimize the antibiotic resistant bacteria population while maintaining the wild-type bacteria
population.

3. Model Analysis

This section explores the dynamics of bacterial populations as the infection rate increases. It includes
simulations of the bacteria population under two conditions: one without any control measures and no
initial infection, and another with an increased infection rate and an initial infection present. These analyses
highlight how varying infection rates and initial conditions affect population trajectories, providing insights
into the effectiveness of infection control strategies.

To examine these various circumstances, we compute the equilibria of Eq. (1) and determine their
respective stability.

3.1. Linear Stability Analysis

We find the equilibria of system (1) by setting the temporal derivatives on the left hand side to zero and
solving the resulting algebraic equations.

No virus case. In the absence of virus and control (β = 0, α = 0, I(0) = 0), Eq. (1) is reduced to a planar
system and two equilibria manifest. One equilibrium (S = 0, R = 0) represents an extinction scenario where
no bacteria are present. The eigenvalues of the corresponding linearization are

θ1 = 2λ(1− µ0)− δs θ2 = 2γ − δm

The instability of this state for our parameter values, indicated by the positive eigenvalues in the linearization
(see Table 2), suggests that any small perturbation away from this equilibrium will cause the population to
move away from extinction towards an alternative equilibrium. Consequently, the bacteria strains rapidly
proliferate, but a significant concern arises if the antibiotic-resistant population begins to grow faster than
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the wild-type population. This scenario would result in the resistant strains becoming predominant, posing
a significant challenge for treatment and control of infections.

Equilibrium Point State Variables Eigenvalues Stability

Extinction S = 0, R = 0 θ1 = 0.488, θ2 = 1.288 Unstable

Mutant Dominance S = 0, R = 0.610 θ1 = −0.488, θ2 = −0.224 Stable

Table 2: Steady states and stability analysis when β =0, α =0 and no infectives present with parameter values

We observed this exact occurrence manifest as the other equilibrium point from Eq. (1). The extermi-
nation of wild-type bacteria by the resistant strain (S = 0, R = 1− δm

2γ ) occurs as a stable equilibrium (see

Table 2, Figure 2A), with eigenvalues corresponding to the linearization

θ1 =

−2δs(Z + 1)γ − 2δm

(
λ(µ0 − 1)Z − δs

2

)
(2Z + 2)γ − δm

θ2 = δm − 2γ

being negative for our parameter values. Thus, any small perturbation away this state will return to the
equilibrium, which characterizes the dominance of the antibiotic-resistant population. This outcome is
undesirable because it implies that the antibiotic-resistant bacteria have become the predominant strain,
making it difficult to control infections.

The proliferation of resistant bacteria highlights the critical need for the development of new antimi-
crobial treatments and the implementation of rigorous infection control measures. Addressing this issue is
essential to prevent the rise of untreatable bacterial infections and safeguard public health. These findings
underscore the urgency of implementing optimal control measures to prevent the growth of resistant strains
and to manage existing populations effectively.

Adding virus-infected bacteria. To ascertain if imputing a viral intervention in system dynamics allows
for resistant population mitigation, we next introduce a virus infected population into our system and
determine the stability of various equilibria from Eq. (1). Following a similar process applied to the no
virus case summarized in Table 2, we obtain the equilibria and the eigenvalues for the model when the
virus infected population is added. In this scenario, analytical results for the equilibria and eigenvalues are
obtainable, but are extremely complicated to parse. As such, we present numerical results for our parameter
set.

Four equilibria result: extinction, mutant dominance, mutant-infective coexistence, and coexistence (see
Table 3):

1. Extinction: The linearization around the extinction scenario (S = 0, R = 0, I = 0) yields eigenvalues
with positive real part. Thus, it is unstable. This suggests that both bacterial strains and infective
agents could proliferate rapidly when pushed away from extinction (unless the dynamics are confined
to a 1D stable manifold, which we consider unlikely). There are two possibilities that emerge from
this instability: (1) The mutants again dominate or (2) the infectives facilitate coexistence.

2. Mutant Dominance: The possibility of strict mutant dominance is nullified in the presence of virus
because the mutant dominant equilibrium is unstable. This instability suggests that the introduction
of the virus can alter the system dynamics, leading to the growth of the bacteria strains over time.
Although there exists a planar subspace of phase space wherein contraction to the mutant-dominant
equilibrium occurs, we do not consider this as a generic perturbation away from this equilibrium. This
highlights the impact of the virus in mitigating the dominance of antibiotic resistance in the bacterial
populations.

3. Mutant-Infective Coexistence: This equilibrium represents a case where mutant (resistant) bacterial
strains coexist with infective bacteria and the wild type bacteria have gone extinct. The eigenvalues
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Figure 2: Simulation results of Eq. (1): (A) bacteria population in the absence of virus-infected bacteria α = 0, β = 0 and
I(0) = 0, (B) bacteria population in the presence of virus-infected bacteria α = 0, β = 15 and I(0) > 0, and (C) a bifurcation
diagram showing the impact of virus infectivity on equilibrium mutant population.

Equilibrium Point State Variables Eigenvalues Stability

Extinction S = 0, R = 0, I = 0 θ1 = 0.488 Unstable
θ2 = 1.288
θ3 = −2.500

Mutant Dominance S = 0, R = 0.610, I = 0.0 θ1 = −0.488 Unstable
θ2 = −0.224
θ3 = 15.800

Mutant Infective Coexistence S = 0, R = 0.083, I = 0.014 θ1 = 0.111 Unstable
θ2 = −0.0333 + 1.0258j
θ3 = −0.0333− 1.0258j

Coexistence S = 0.042, R = 0.041, I = 0.025 θ1 = −0.0617 Stable
θ2 = −0.0639 + 1.4389j
θ3 = −0.0639− 1.4389j

Table 3: Equilibria and stability when β > 0, α = 0, and I > 0. Here, j =
√
−1.

indicate instability, suggesting that small disturbances will cause the populations to deviate from this
delicate balance. The instability of this steady state will support the growth of the wild-type bacteria
population. The instability implies that both resistant and infective bacterial populations could grow
faster than the wild-type strains, potentially leading to their dominance. This outcome is undesirable,
necessitating the implementation of effective control measures to prevent the unchecked proliferation
of resistant and infective bacterial strains.

4. Coexistence: In this scenario, all bacterial strains coexist. Importantly, this equilibrium is stable as
indicated by the negative real parts of all eigenvalues in the linearization. Furthermore, in this case
with our parameters, the model predicts that the wild-type strain outnumbers the mutant, which is
desirable (see Figure 2B). This ensures a level of control and mitigation of the risks associated with
bacterial coexistence and resistance emergence.

Thus, we have established that the presence of virus mitigates the mutant (resistant) strain of bacteria.
To further embellish this point, we show a bifurcation diagram in Figure 2C depicting how the equilibrium
resistant population decreases as a function of virus infectivity (β). For low infectivities, the mutant strain is
able to maintain its dominance. However, at a critical infectivity, a transcritical-like bifurcation occurs and
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stabilizes the coexistence state. In principle, introducing a highly infective virus will completely exterminate
the mutants. This is desirable, but a high infectivity will eventually eliminate all bacterial strains, which is
not desirable.

Although simply introducing virus-infected bacteria helps mitigate resistant bacterial infection, the per-
sistence of resistant strains at levels similar to wild-type strains is problematic. Furthermore, the stable equi-
librium suggests coexistence, but the vast majority of the compartment is vacant (1−S∗−R∗−I∗ = 0.892).
Thus we must determine if it is possible to attain a situation where the wild-type strain outnumbers the
resistant strain significantly and populates much of the compartment. To that end, we implement optimal
control theory on Eq. (1).

3.2. Optimal Control

The integration of optimal control techniques in studying bacterial dynamics, particularly in the context
of antibiotic resistance and virus inclusion, is motivated by the urgent need for effective strategies to combat
bacterial infections. Optimal control methods offer a powerful framework for designing and implementing
interventions that optimize the use of available resources, such as antibiotics and vaccines, to minimize the
emergence and transmission of resistant strains while preserving the efficacy of existing treatments. Recent
studies have highlighted the potential of optimal control in guiding decision-making processes and informing
policy interventions aimed at controlling antibiotic resistance [54–56]. By incorporating virus inclusion into
the model, our study further extends this framework to elucidate the complex interplay between bacteria
and viruses and to explore novel avenues for combating antibiotic resistance.

For the purposes of mitigating resistant bacteria, consider the objective function

J(α) = min
α

∫ T

0

(
AR(t)− PS(t) + Cα2

)
dt, (2)

subject to Eq. (1) with 
S(0) = S0 ≥ 0

R(0) = R0 ≥ 0,

I(0) = I0 ≥ 0.

(3)

The constants A, P and C are weights applied on S(t), R(t) and the control variable α (the virus
infected bacteria infusion rate), respectively. We employ a standard quadratic term for the control variable
α in equation (2) following [57]2. The goal is to minimize the objective functional J(α) in order to find
the optimal values of α such that the antibiotic-susceptible bacteria population S is maximized while the
antibiotic-resistant bacteria population R is minimized. The objective of minimizing the infected population
and the cost of control can be achieved through proper implementation of the control over a time interval
given by [0, T ]. Therefore, we seek an optimal control α∗ such that

J(α∗) = min
α

{J(α)}. (4)

The necessary conditions for the existence of an optimal solution come from Pontryagin’s Maximum Principle
[57]. This principle converts Eqs. (2)–(3) into a problem of minimizing the associated Hamiltonian H
pointwise with respect to α. We define the Hamiltonian for this problem by

H =

(
AR(t)− PS(t) + Cα2

)
+ ΛS

(dS
dt

)
+ ΛR

(dR
dt

) + ΛI

(dI
dt

)
= AR(t)− PS(t) + Cα2 + ΛS

(
2λS(1− S −R− I)(1− µ)− 2βIS − δsS

)
(5)

2Using a quadratic term facilitates onset of continuous control, whereas employing a linear term results in discontinuous
bang-bang control
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+ ΛR

(
2λS(1− S −R− I)µ+ 2γR(1− S −R− I)− 2βIR− δmR

)
+ ΛI

(
2βIS + 2βIR− δiI + α

)
where ΛS(t), ΛR(t), and ΛI(t) are the corresponding adjoint or co-state variables to be determined by
applying Pontryagin’s Maximum Principle with the following transversality conditions

ΛS(T ) = 0,

ΛR(T ) = 0,

ΛI(T ) = 0.

Using the optimality condition
∂H

∂α
= 0, we solve for the optimal injection rate of the virus infected bacteria

α.

α∗ =
−ΛI

2C
.

We solve the optimal control problem employing the forward-backward sweep method [57].

Results. We implemented the optimal control over a period of T = 100 days and observed the resulting
dynamics of the bacterial population state variables. Figure 3A shows the optimal trajectory of the control
variable α to obtain our desired results. It predominantly maintains a constant value with sharp declines
near the start and end of the time interval of interest. The effect of this control upon the bacterial strain
populations is shown in Figures 3B-D. For comparison, we also present the analogous bacterial populations
in the absence of control. Figure 3A shows that the wild-type bacteria population is significantly higher with
control present than without it. Conversely, the antibiotic-resistant bacteria population R (see Figure 3B)
decreased drastically in the presence of control. This finding underscores the intricate relationships between
viruses and bacteria, as well as the potential for exploiting viral therapy to combat antibiotic resistance. The
population dynamics when optimal control strategies are applied and its effect on the bacteria population
provide insights into the dynamics of wild-type and antibiotic-resistant bacteria populations under different
control scenarios, facilitating the evaluation and optimization of control strategies to manage antibiotic re-
sistance effectively.

A clinically plausible implementation. The following results are motivated by the difficulty of clinically
realizing the exact control profile in Figure 3A for the rate of infusion of the virus into the system. Although
the optimal control profile facilitated the onset of a state where wild-type bacteria significantly dominate
mutant strains, implementing such a tightly regulated control is not feasible clinically. However, because
the control profile is predominantly constant, we seek to determine a constant injection rate α̂ such that

α̂T =

∫ T

0

α∗(t)dt.

That is, we determine a constant injection rate α̂ such that the total virus injected over the time interval
[0, T ] is equal to the total amount injected with the optimal control profile. This yields the simple equation
for α̂:

α̂ =
1

T

∫ T

0

α∗(t)dt (6)

This constant rate of virus injection is applied into our system to see the effect on the dynamics of S and R
and I. Success in reducing resistant bacteria with constant injection rate imputes stability in intervention
measures while offering predictability.

Figure 4A-B illustrate the changes in the populations of S and R, respectively, reflecting the effect of the
constant rate of viral infusion (Figure 4A inset) on the population in the bacterial community. The resulting
dynamics of the bacterial strain populations are similar to Figure 3, indicating that system dynamics are
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Figure 3: Simulation results of Eq. (1) with optimal control obtained from solving Eq. (4). (A) the optimal profile for the
control variable α, (B) the corresponding wild type bacteria population S, (C) the corresponding antibiotic-resistant bacteria
population R, and (D) the corresponding virus infected bacteria population I.
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Figure 4: Simulation results from Eq. (1) with a constant virus infusion rate α̂ as obtained from Eq. (6) (A) Wild type
population in response to the constant control profile. Inset: the constant control profile. (B) Antibiotic-resistant bacteria
population R and (C) Virus infected bacteria population I.

not overtly sensitive to the control profile. In this clinically feasible injection protocol, desirable reduction

10

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2024. ; https://doi.org/10.1101/2024.12.07.24318622doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.07.24318622
http://creativecommons.org/licenses/by/4.0/


Control Profile Objective Functional

Optimal: α∗ = [0, 1] J(α∗) = 87.6903

Constant: α̂ = 0.5200 J(α̂) = 90.3541

Table 4: Comparison of the the objective functional of the optimal and the constant control profile

in mutant bacterial population is achieved when compared with the absence of control case.
How far from optimality is the constant control profile implementation? In Table 4 we compare the

objective functional J for the different scenarios of α (Optimal vs Constant). The objective functional value
for J(α̂) is reasonably close to J(α∗), with approximately a 4% difference in value. Thus, implementing
a constant viral infusion is a clinically feasible protocol that is near optimality for mitigating antibiotic-
resistant mutant bacterial infection.

4. Conclusion

This study focused on modeling the interplay between wild type bacteria, mutant antibiotic resistant
bacteria, and virus-infected bacteria populations, with the specific aim of understanding how antibiotic-
resistant bacterial infections may be treated or controlled in the presence of a viral infection. We found
that the simple introduction of a virus facilitates the desirable outcome of wild-type bacteria outcompeting
mutant resistant bacteria. However, the presence of virus vastly diminished the total bacterial population.
This motivated the implementation of optimal control upon the viral infusion rate. In the presence of
control, wild-type bacteria vastly overcome mutant bacteria. Although the optimal infusion profile is not
realistically realizable in a clinical setting, we showed that using a constant profile approximation of the
optimal infusion rate is sufficient to reduce resistants and maximize wild type bacteria.

Importantly, we did not seek to eliminate resistant bacteria completely. Our goal was simply to mitigate
resistant bacteria population. This removed the need for unnecessarily strong interventions—such as the
ones that facilitated onset of antibiotic-resistant mutant bacterial strains. Rather, we modified a standard
dynamical system of bacterial dynamics in infections and allowed the intrinsic dynamics to result in desirable
outcome of diminished mutant population.

The findings of this study have significant implications for curbing antibiotic resistance. Our strategy
not only reduces the population of resistant bacteria but also maximizes the presence of wild-type bacteria,
which are more susceptible to antibiotics. This dual benefit highlights the potential of using viral infections
as a complementary tool in the fight against antibiotic resistance. Moreover, our study underscores the
importance of considering the broader ecological and evolutionary dynamics in the design of treatment
strategies. By not aiming to eliminate resistant bacteria completely, we avoid the selective pressures that
often lead to the emergence of even more resistant strains. Instead, our approach seeks to balance the
bacterial ecosystem, promoting a more sustainable and long-term solution to antibiotic resistance.

There are a number of issues to explore in future work. First, our work here demonstrates that viral
infection could be a measure used to mitigate mutant resistant bacterial infection, but it clearly overlooks
aspects of bacterial infection. For example, our model overlooks the effect of including spatial dynamics.
It would be interesting to use dispersion theory to characterize the biophysical parameters that affect viral
infection of resistant bacteria and to inform optimal control in space. Another important question in spatial
systems is how do we incorporate viral dynamics? We can simply proceed as we did in this manuscript
and track infected bacterial cells or we could explicitly model viral dynamics and their infection process of
bacteria, leading to a complex multiscale modeling paradigm. Finally, as we noted in the body of manuscript,
Eq. (1) can be derived systematically from a stochastic lattice model. It would be interesting to implement
stochastic optimal control theory and see what wrinkles including noise brings to the dynamics.

11

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2024. ; https://doi.org/10.1101/2024.12.07.24318622doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.07.24318622
http://creativecommons.org/licenses/by/4.0/


5. Appendix

The adjoint equations for the optimal control are given by

λ′
S(t) = −∂H

∂S
= −

[
− P + ΛS

(
(2λ− 4λS − 2λR− 2λI)

(
1−

(
µ0 + (1− µ0)

R

K +R+ I

))
− 2βI − δs

)
+ ΛR

((
2λ− 4λS − 2λR− 2λI

)(
µ0 + (1− µ0)

R

K +R+ I

)
− 2γR

)
+ ΛI(2βI)

]
λ′
R(t) = −∂H

∂R
= −

[
A+ ΛS

(
− 2λS

(
1−

(
µ0 + (1− µ0)

R

K +R+ I

))
+ (2λS − 2λS2 − 2λSR

− 2λSI)
(K +R+ I)(µ0 − 1)− (µ0 − 1)R

(K +R+ I)2

)
+ ΛR

(
(−2λS)

(
µ0 + (1− µ0)

R

K +R+ I

)
+
(
2λS − 2λS2 − 2λSR− 2λSI

) (K +R+ I)(µ0 − 1)− (µ0 − 1)R

(K +R+ I)2
+ 2γ − 2γS − 4γR− 2γI

− 2βI − δm

)
+ ΛI(2βI)

]
λ′
I(t) = −∂H

∂I
= −

[
ΛS

(
(2λS − 2λS2 − 2λSR− 2λSI)

( (1− µ0)R

(K +R+ I)2
)
− 2λS

(
1− (µ0

+ (1− µ0)
R

K +R+ I
− 2βS

)
+ ΛR

(
− 2λS

(
µ0 + (1− µ0)

R

K +R+ I

)
+ (2λS − 2λS2 − 2λSR

− 2λSI)
(1− µ0)R

(K +R+ I)2
− 2γR− 2βR

)
+ ΛI

(
2βS + 2βR− δi

)]
(7)
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