Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that requires early diagnosis for effective management. However, issues with currently available diagnostic biomarkers preclude early diagnosis, necessitating the development of alternative biomarkers and methods, such as blood-based diagnostics. We propose c-Triadem (constrained triple-input Alzheimer’s disease model), a novel deep neural network to identify potential blood-based biomarkers for AD and predict mild cognitive impairment (MCI) and AD with high accuracy. The model utilizes genotyping data, gene expression data, and clinical information to predict the disease status of participants, i.e., cognitively normal (CN), MCI, or AD. The nodes of the neural network represent genes and their related pathways, and the edges represent known relationships among the genes and pathways. We trained the model with blood genotyping data, microarray, and clinical features from the Alzheimer’s Neuroimaging Disease Initiative (ADNI). We demonstrate that our model’s performance is superior to previous models with an AUC of 97% and accuracy of 89%. We then identified the most influential genes and clinical features for prediction using SHapley Additive exPlanations (SHAP). Our SHAP analysis shows that CASP9, LCK, and SDC3 SNPs and PINK1, ATG5, and ubiquitin (UBB, UBC) expression have a higher impact on model performance. Our model has facilitated the identification of potential blood-based genetic markers of DNA damage response and mitophagy in affected regions of the brain. The model can be used for detection and biomarker identification in other related dementias.
Author Summary C-Triadem, our novel developed deep neural network, accurately predicts moderate cognitive impairment (MCI) and Alzheimer’s disease (AD) while identifying potential blood biomarkers for AD. Current diagnostic methods have limitations, emphasizing the critical need for early AD detection. Our model integrates genetic, gene expression, and clinical data to differentiate among cognitively normal individuals, MCI, and AD cases. Training and validation using Alzheimer’s Disease Neuroimaging Initiative (ADNI) data demonstrate superior performance, with a 97% AUC and 89% accuracy, surpassing previous models. SHapley Additive exPlanations (SHAP) analysis highlights key clinical features (e.g., MMSE scores, brain volume) and genes (e.g., CASP9, LCK, SDC3), revealing potential genetic markers and pathways in blood associated with AD. By incorporating Reactome pathways, our approach enhances interpretability, providing insight into the biological context of predictions. In summary, c-Triadem represents a significant advancement in AD diagnostics, enabling earlier and more accurate diagnoses for improved treatment strategies.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work is supported by Khalifa University under Award no. FSU-2021-005. Data collection and sharing for this project was funded by the Alzheimers Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following:AbbVie, Alzheimers Association; Alzheimers Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F.Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (https://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimers Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study used only openly available public human data that were originally located at: ADNI repository.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
↵* aamna.alshehhi{at}ku.ac.ae
Data Availability
All data produced in the present work are contained in the manuscript.