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Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that requires early diagnosis
for effective management. However, issues with currently available diagnostic
biomarkers preclude early diagnosis, necessitating the development of alternative
biomarkers and methods, such as blood-based diagnostics. We propose c-Triadem
(constrained triple-input Alzheimer’s disease model), a novel deep neural network to
identify potential blood-based biomarkers for AD and predict mild cognitive impairment
(MCI) and AD with high accuracy. The model utilizes genotyping data, gene expression
data, and clinical information to predict the disease status of participants, i.e.,
cognitively normal (CN), MCI, or AD. The nodes of the neural network represent genes
and their related pathways, and the edges represent known relationships among the
genes and pathways. We trained the model with blood genotyping data, microarray,
and clinical features from the Alzheimer’s Neuroimaging Disease Initiative (ADNI). We
demonstrate that our model’s performance is superior to previous models with an AUC
of 97% and accuracy of 89%. We then identified the most influential genes and clinical
features for prediction using SHapley Additive exPlanations (SHAP). Our SHAP
analysis shows that CASP9, LCK, and SDC3 SNPs and PINK1, ATG5, and ubiquitin
(UBB, UBC) expression have a higher impact on model performance. Our model has
facilitated the identification of potential blood-based genetic markers of DNA damage
response and mitophagy in affected regions of the brain. The model can be used for
detection and biomarker identification in other related dementias.

Author Summary
C-Triadem, our novel developed deep neural network, accurately predicts moderate
cognitive impairment (MCI) and Alzheimer’s disease (AD) while identifying potential
blood biomarkers for AD. Current diagnostic methods have limitations, emphasizing the
critical need for early AD detection. Our model integrates genetic, gene expression, and
clinical data to differentiate among cognitively normal individuals, MCI, and AD cases.
Training and validation using Alzheimer’s Disease Neuroimaging Initiative (ADNI) data
demonstrate superior performance, with a 97% AUC and 89% accuracy, surpassing
previous models. SHapley Additive exPlanations (SHAP) analysis highlights key clinical
features (e.g., MMSE scores, brain volume) and genes (e.g., CASP9, LCK, SDC3),
revealing potential genetic markers and pathways in blood associated with AD. By

November 20, 2024 1/21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2024.11.19.24317595doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.11.19.24317595
http://creativecommons.org/licenses/by-nc-nd/4.0/


incorporating Reactome pathways, our approach enhances interpretability, providing
insight into the biological context of predictions. In summary, c-Triadem represents a
significant advancement in AD diagnostics, enabling earlier and more accurate diagnoses
for improved treatment strategies.

Introduction 1

Alzheimer’s disease (AD) is the most common form of dementia, characterized by a 2

gradual loss of cognition and memory. It is expected to affect around 78 million elderly 3

by 2030. [1] While the APOE ϵ4 allele, mutations in presenilin-I and APP (amyloid 4

precursor protein) are established genetic markers, [2] AD is considered a multifactorial, 5

complex disease driven by both genetic and environmental factors. [3] The AD 6

hallmarks include amyloid-β (Aβ) deposition and formation of neurofibrillary tangles 7

(NFT) such as tau protein aggregates. [4] Its early symptoms are traced by the higher 8

rates of neurodegeneration in the entorhinal cortex and hippocampus cornu ammonis 1 9

region, [5, 6] which correlated with increased NFT in this regions. [7] 10

AD hallmarks are used by the National Institute on Aging and Alzheimer’s 11

Association (NIA-AA) to categorize existing AD biomarkers under Aβ deposition, 12

pathologic tau, and neurodegeneration [AT(N)] research framework, enabling a 13

biological definition of AD. [8] However, the diagnostic modalities for AT(N) biomarkers 14

(such as MRI (magnetic resonance imaging), PET (positron emission tomography), and 15

lumbar puncture) are known to be expensive or invasive. Padala and Newhouse [9] 16

-knowing that MRI and PET scans can cost up to US$ 8,000 and US$ 3,400 respectively. 17

In contrast, blood tests are relatively cost-effective (up to US$ 1,250). Therefore, 18

clinical diagnosis through blood sampling has been proposed to make testing more 19

accessible and affordable for the patient population, and enable routine monitoring [9]; 20

as well as recent research has focussed on elucidating blood-based biomarkers, to 21

facilitate less-invasive diagnostic tests for AD. [10–13] 22

Nonetheless, several hurdles remain for conventional biomarker testing in blood 23

samples. One major issue is the quantitation of extremely low levels of Aβ and tau 24

proteins against a background with high levels of plasma proteins, such as albumin and 25

immunoglobulin. The low levels of Aβ and tau may be further subject to 26

metabolization and clearing by physiological processes. [14] While the issue may be 27

overcome with ultrasensitive assays, [15] the considerable degree of overlap in the levels 28

of Aβ between AD patients and cognitively normal individuals precludes its use as a 29

definitive blood marker by itself. [16] Moreover, existing biomarkers for diagnosis require 30

significant levels of Aβ deposition and/or tau pathology for detection, precluding early 31

diagnosis which is imperative for effective treatment. [17] 32

The disadvantages of conventional biomarkers in blood-based diagnostics highlight 33

the need to develop novel methods and biomarkers which can facilitate accurate, early 34

diagnosis, based on experimental evidence of changes in the blood cells of patients with 35

MCI (mild cognitive impairment, ie., prodromal stage) and advanced AD. [18] Polygenic 36

risk scores capture the association of several gene loci with plasma biomarkers [19] and 37

are shown to improve accuracy in distinguishing cognitively normal (CN) and AD 38

cases. [20] Reddy et al. [21] showed that plasma mRNA levels of an eQTL (expression 39

quantitative trait locus)-curated gene panel significantly increased diagnostic accuracy 40

and may also have utility in discriminating between different types of dementia. 41

Blood-based panels of potential biomarker genes have been identified using machine 42

learning (ML) for early detection of AD. [17,22] 43

With ML and artificial intelligence (AI), accurate and early diagnosis using 44

multimodal, blood-based data is a distinct possibility. Several ML models have been 45

proposed to distinguish between healthy CN, MCI, and advanced AD patients. Stamate 46
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et al. [23] utilized plasma metabolites in an XGBoost model to achieve an AUC of 0.89 47

in distinguishing between AD and CN cases. Logistic regression using plasma levels of 48

inflammatory proteins enabled the differentiation of AD from controls (AUC 0.79) and 49

MCI subjects (AUC 0.74). [24] A Random forest model of serum protein multiplex 50

biomarker data attained an AUC of 0.91 in predicting AD and CN cases. [25] Qui et 51

al. [26] proposed a deep learning framework that uses neuroimaging data and patient 52

demographic information for binary classification of AD and cognitively normal 53

participants with accuracy comparable to human experts. Advances in deep learning 54

such as the development of the SHapley Additive exPlanations (SHAP) [27] algorithm 55

enable the investigation of multi-omic data with transparent, biologically relevant 56

models, which is important to engender trust and facilitate adoption by clinicians. [28] 57

In this study, we introduce c-Triadem, a constrained deep neural network 58

multiclass-classifier, which incorporates prior biological information in the form of 59

Reactome pathways to accurately classify samples as CN, MCI, or AD. Genotyping, 60

gene expression, and clinical data from the Alzheimer’s Disease Neuroimaging Initiative 61

(ADNI) [29] are used for training, validation, and testing. The significance of genetic 62

and clinical features in the input is assessed by employing SHapley Additive 63

exPlanations (SHAP). Further, we interrogate the intermediate layers to better 64

understand model behavior and gain mechanistic insights into the role of the genes 65

identified as potential biomarkers. The proposed methodology, experimental data, 66

results, and conclusions are presented in the following sections. 67

Results 68

Clinical cohort characteristics 69

The cohort of selected ADNI participants includes 212 CN, 317 MCI, and 97 AD 70

subjects. The clinical features after imputation are summarized in Tables 1 and 2. In 71

general, the CN, MCI, and AD groups differ significantly in terms of mean age (p < 72

0.001) and proportion of female participants (p = 0.012). We also observe a higher 73

proportion of AD patients with the APOE ϵ4 allele compared to MCI and CN subjects 74

(p < 0.001). As expected, AD patients show significantly worse performance in 75

neuropsychological tests (p < 0.001). Furthermore, measures of brain volume are lower 76

in AD patients (p < 0.001) with the exception of ICV, which remains similar across the 77

groups. Brain functioning measures are also significantly impacted in AD with higher 78

levels of AV45 and CSF tau protein, along with lower FDG uptake (p < 0.001). 79

Model performance 80

With c-Triadem, we achieved an accuracy of 89% and an AUC of 97% on the test data. 81

We also developed an unconstrained dense network with similar architecture (accuracy 82

87% and AUC 96%) for comparison and were able to demonstrate c-Triadem’s superior 83

performance. We also tested whether our model may be refined by additional pathway 84

layers. Training our model with two additional pathway layers in each subnetwork 85

produced comparable results with an AUC of 96% and an accuracy of 88%. The 86

performance of our model compared to other available machine learning classifiers on 87

ADNI data is shown in Table 3. 88

Model explanation 89

To examine the importance of specific genes and clinical features in model prediction, 90

we computed SHAP values in the constrained model for the three types of input, i.e., 91
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Table 1. ADNI demographics and brain test variable clinical data summary showing average values with standard deviation.
Statistical significance (95% significance level) was tested using analysis of variance (ANOVA) for the age of onset and years of
education, Chi-square contingency for gender proportions and APOE ϵ4 allele, and Kruskal-Wallis test for all other variables.

CN MCI AD P-value
Number of samples 212 317 97
APOE ϵ4 allele present 58 154 77 <0.001
Gender (female) 105 131 31 0.012
Age 74.620±5.444 72.069±7.462 74.723±7.594 <0.001
Years of education 16.231±2.675 15.911±2.747 16.175±2.912 0.384
Brain functioning and clinical tests
FDG uptake 1.299±0.112 1.267±0.128 1.045±0.150 <0.001
AV45 uptake 1.103±0.182 1.193±0.226 1.341±0.243 <0.001
Level of tau protein in CSF 247.913±81.605 266.968±122.224 374.673±143.266 <0.001
Brain volume measurements from MRI
Ventricles 34517.162±18550.933 38657.239±22996.339 55538.765±25105.972 <0.001
Hippocampus 7270.301±956.410 7031.596±1113.513 5436.083±1067.069 <0.001
Entorhinal complex 3754.567±666.689 3681.1867±23.034 2610.140±694.886 <0.001
Fusiform complex 18144.345±2461.023 18383.708±2776.218 15072.561±2330.017 <0.001
Mid-temporal 19974.678±2681.839 20479.689±2777.653 16467.175±3162.854 <0.001
Intracranial volume (ICV) 1500236.243±156407.973 1530645.222±151053.965 1546662.105±191022.847 0.0977
Whole brain 1018671.177±107104.069 1052311.884±109453.752 955524.111±118730.033 <0.001

SNPs, gene expression, and clinical features. Beeswarm plots for the top 20 features in 92

each type of input are provided in Figure 1. 93

SNPs 94

The SHAP beeswarm plots for SNPs are depicted in Figures 1a for CN prediction, 1d 95

for MCI prediction, and 1g for AD prediction. SNPs found in genes such as CASP9, 96

LCK, and SDC3 have been prioritized by the SHAP scores, showing their influence on 97

model behavior. We performed a network analysis with STRING (Search Tool for 98

Interacting Genes/Proteins) using the selected genes to identify enriched biological 99

pathways, as described in the Methodology section 4.6. The resulting network contains 100

40 edges (protein-protein interaction (PPI) enrichment p-value 0.0157), which suggests 101

that the genes are biologically connected. More than three-fourths of the interactions 102

have been experimentally validated or extracted from curated databases. Notably 103

enriched pathways include cellular response to stress (network strength (NS) of 0.92 104

with false discovery rate (FDR) of 0.00018) and CD28 costimulation (NS 1.74 with FDR 105

0.00055). CD28 is expressed by T-cells and is essential for T-cell proliferation and 106

cytokine production. 107

Gene expression 108

The SHAP beeswarm plots for gene expression are depicted in Figures 1b for CN 109

prediction, 1e for MCI prediction, and 1h for AD prediction. The expression of CCNE1, 110

ATG5, MAP1LC3B, RB1, UBC, TOMM20, and PINK1 are marked as significant for 111

model prediction with SHAP. We examined the protein-protein interaction network 112

using STRING to identify enriched pathways among the selected genes. The network 113

contains 164 edges (PPI enrichment p-value < 1.0× 10−16), with the vast majority 114

being experimentally validated and/or extracted from curated databases, indicating 115

biological relevance. Enriched pathways include aggrephagy (NS 2.12, FDR 0.0082), 116

mitophagy (NS 1.99, FDR 0.0119), autophagosome assembly (NS 1.52, FDR 117
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Fig 1. SHAP summary beeswarm plots
SHAP scores colored by feature values are presented for each feature and prediction
class. Plots show the impact of top 20 (a, d, g) aggregated SNPs features, (b, e, h)
microarray gene expression data, and (c, f, i) clinical data for (a, b, c) CN, (d, e, f)
MCI and (g, h, i) AD prediction, respectively.
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9.02× 10−5) and selective autophagy (NS 1.69, FDR 0.0027). Further, pathways related 118

to DNA damage response (NS 1.78, FDR 7.36× 10−7) and nucleotide repair (NS 1.83, 119

FDR 9.27× 10−5) have been enriched. 120

Clinical features 121

The SHAP beeswarm plots for clinical features are depicted in Figures 1c for CN 122

prediction, 1f for MCI prediction, and 1i for AD prediction. We observed that the 123

clinical features, such as MMSE, Ecog, FAQ, RAVLT immediate recall, RAVLT learning 124

and CDRSB scores are highly impactful in prediction of AD. Other clinical features 125

with significant influence on model prediction include whole brain volume, presence of 126

APOE ϵ4 allele, age, and uptake levels of FDG and AV45. 127

Intermediate layer activation 128

Nodes with significant differences in activation across CN, MCI, and AD inputs 129

represent pathways through which genotyping and gene expression inputs impact 130

c-Triadem predictions. Therefore, we examined node activation in the intermediate 131

layers of the subnetworks. We observed differences in activation at all three hierarchy 132

levels in our model. Figure 2 depicts the kernel density estimation curves for pathway 133

nodes in the intermediate layers of the subnetworks with significant differences in 134

activation. At the lowest level, we observed differences in activation among the nodes 135

representing PLCγ1 (phospholipase-c gamma 1) signaling, neutrophil degranulation, 136

and TRKA (tropomyosin receptor kinase A) activation by NGF (nerve growth factor). 137

Differentially activated pathways at the second level include DNA double-stranded 138

break response, formation of apoptosomes, and caspase activation via death receptors. 139

Third-level pathways include cytochrome-c mediated apoptotic response, caspase 140

activation, and signaling by NOTCH and FLT3. 141

Discussion 142

In this study, we have described our model c-Triadem, a constrained multimodal deep 143

neural network multiclassifier that accurately predicts the patient’s disease status as 144

either CN, MCI, or AD on the basis of their genotyping, gene expression, and clinical 145

data. The input layers contain nodes encoding genes and their respective biological 146

pathways, and edges are constrained to reflect known relationships among the genes and 147

pathways. The pathway information was taken from the Reactome pathway database, 148

which systematically associates proteins with their functional role in biological pathways, 149

and connects pathways hierarchically. We have shown that our model has superior 150

performance compared to previous deep neural networks trained with the ADNI dataset. 151

SHAP scores enable the identification of genetic and clinical features which explain 152

the model predictions. From the STRING interaction networks, it is observed that the 153

genes prioritized by SHAP (such as CASP9, LCK, SDC3, CCNE1, ATG5, UBC, and 154

TOMM20) are associated with each other in AD-related biological pathways. The gene 155

CASP9 (caspase-9) is a cysteine-aspartic protease that serves as an initiator for 156

apoptosis. CASP9 is well-studied in neurodegenerative diseases, with increasing levels of 157

CASP9 implicated in AD brains as well as platelet-rich plasma. [33–35] LCK 158

(lymphocyte-specific protein tyrosine kinase) is located in a well-known linkage 159

region [36] and has been named a risk factor for AD. [37] Mouse studies suggest that 160

LCK inhibition alters spatial learning and impairs long-term memory. [38] SDC3 161

(Syndecan-3, a proteoglycan) expression in PBMC has been correlated with Aβ and has 162

been suggested as a potential biomarker for the diagnosis of early AD. [39] Several 163
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Fig 2. Kernel density estimation curves for intermediate layers
Kernel density estimation curves are presented for pathways with significant differences
in activation (established by the Kruskal-Wallis test) at all three levels of hierarchy for
(a) SNPs and (b) gene expression data. The P-value for each pathway is reported
adjacent to the graph.
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studies have identified dysfunctional mitophagy as an early marker of Alzheimer’s 164

disease, driving amyloid-β aggregation and neurofibrillary tangle formation. [40] 165

Mitophagy and aggrephagy refer to the autophagic clearance of damaged mitochondria 166

and protein aggregates respectively. Reduced levels of mitophagy markers ATG5 and 167

Parkin have been demonstrated in MCI and AD patients. [41] Given that 168

hypometabolism caused by impaired energy metabolism is one of the earliest possible 169

markers of AD, genes related to mitophagy may serve as potential biomarkers for AD 170

diagnosis in the early stages. Additionally, SHAP-selected clinical features (RAVLT 171

scores, specifically immediate recall and percent forgetting) have a strong association 172

with brain structural atrophy. [42] 173

The constrained model also allows the identification of biological pathways which 174

emphasize the differences among the three diagnostic groups. Moreover, the selected 175

pathways with significant differences in intermediate node activation (such as PLCγ1 176

signaling, TRKA activation by NGF, DNA double-stranded break response, and caspase 177

activation) reinforce SHAP findings. For instance, SHAP-selected CASP-9 works 178

through the caspase activation pathway identified by intermediate node activation. The 179

findings are also supported by previous studies. It is known that PLCγ1 activation is 180

reduced in PBMC samples from AD patients. [43] Deficiencies in the TRKA/NGF axis 181

are implicated in the depletion of cholinergic neurons and cognitive decline in AD. [44] 182

Recent studies indicate that the development of AD is associated with systemic 183

changes in the neuronal environment reflected in other parts of the body. Studies in 184

peripheral blood mononuclear cells (PBMCs) from amnestic MCI and AD patients show 185

differential expression of senescence markers, such as cell cycle blockade (p16 and p53) 186

and DNA damage response (γH2AX). [18] Garfias et al. [45] have reported significantly 187

higher levels of activated lymphocytes in AD patients. Moreover, a gene expression 188

analysis of PBMC samples in the AddNeuroMed cohort [46] identified DEGs 189

(differentially expressed genes) significantly enriched in pathways related to T-cell and 190

neutrophil activation in immune response, lymphocyte differentiation, protein 191

serine/threonine kinase activity, GTPase and DNA transcription factor binding. [47] In 192

our study, we have identified potential genetic markers of amyloidosis, immune 193

activation, DNA damage response, and dysfunctional mitophagy in blood-derived 194

genetic data. Further, the information from enriched pathways provides mechanistic 195

insights into AD pathogenesis. 196

While our model has been validated through network analysis and consistency with 197

literature reports, we recognize that multimodal data from additional cohorts would 198

corroborate our findings. As more data become available, we hope to refine our model 199

and establish its validity on other independently curated datasets. We also intend to 200

incorporate non-coding SNP data and other data modalities to improve performance, as 201

non-coding SNPs may affect gene regulation and expression indirectly, thus revealing 202

more mechanistic insights into AD pathology. Our model uses explainable AI to probe 203

multi-omic data for genes and clinical features associated with AD pathogenesis and 204

provides further transparency by exposing the biological pathways which influence its 205

predictions. As a result, we firmly believe that c-Triadem holds the potential to 206

facilitate precise and early diagnosis of AD, as well as other forms of dementia. 207

Materials and methods 208

Dataset 209

Alzheimer’s Disease Neuroimaging Initiative 210

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 211

Neuroimaging Initiative (ADNI) database. ADNI was launched in 2003 as a 212

November 20, 2024 8/21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2024.11.19.24317595doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.19.24317595
http://creativecommons.org/licenses/by-nc-nd/4.0/


public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 213

primary goal of ADNI has been to test whether serial magnetic resonance imaging 214

(MRI), positron emission tomography (PET), other biological markers, and clinical and 215

neuropsychological assessment can be combined to measure the progression of mild 216

cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date 217

information, see https://adni.loni.usc.edu/. In addition to MRI and PET neuroimaging 218

of patients at regular intervals, ADNI has collected and analyzed whole blood samples 219

for genotyping and gene expression analysis. Blood gene expression profiling was 220

conducted using Affymetrix Human Genome U219 Array for 744 samples in the 221

ADNI2/ADNI-GO (Grand Opportunity) phase. Blood genotyping and gene expression 222

methods for ADNI have been described in detail by Saykin et al. [29] The ADNI studies 223

were approved by institutional review boards of all participating institutions, and 224

written informed consent was obtained from all participants or authorized 225

representatives. [29]. The study protocol obtained approval from the human research 226

committees at each involved institution, and informed consent was provided by all 227

participants or their legal guardian(s)/legally authorized representatives. The research 228

procedures strictly adhered to applicable guidelines and regulations [52,53]. Table 4 229

presents a summary of the genotyping data provided by ADNI. 230

We selected sample data from 626 participants that had both SNP data and gene 231

expression data for training, testing, and validation in the deep learning model. Out of 232

626 participants, 212 were CN, 317 participants had MCI and 97 were diagnosed with 233

dementia due to AD. The criteria for AD and MCI diagnosis in ADNI are detailed by 234

Petersen. [48] 235

Genotype data 236

Genotyping data were downloaded in PLINK binary format, consisting of .bed, .bim 237

and .fam files. The .bed file is the primary representation of genotype calls of biallelic 238

variants. The .bim file accompanies the .bed file and provides extended variant 239

information, i.e., SNP IDs, base-pair coordinates, and allele information. The .fam file 240

provides sample information, including parent roster IDs and phenotype. We utilized 241

the .bim file to identify the presence of variants and encoded SNPs using additive 242

representation (i.e., 0 = homozygous dominant, 1 = heterozygous, 2 = homozygous 243

recessive). We used the dbSNP ID as the unique identifier for SNPs. We then mapped 244

SNPs that occur in coding sequences (CDS) to their corresponding gene loci. Input 245

values represent the aggregate additive value of all SNPs mapped to the coding 246

sequences of individual genes. The SNP data along with gene expression data represent 247

two of the inputs for the model. 248

Clinical data 249

Clinical data include demographic information, scores from neuropsychological tests, 250

brain volume measurements, and levels of clinical biomarkers of AD, such as Aβ, tau 251

protein, and FDG uptake. Patient demographic information includes age, gender, 252

ethnicity, racial category, marital status, and years of education. The demographic data 253

were encoded as categorical variables before model training. Genotype information (ie. 254

presence of APOE ϵ4) is also included. Brain functioning as measured by 255

fluorodeoxyglucose (FDG), PIB (Pittsburgh compound B), and amyloid detection 256

ligand (AV45) uptake with PET are reported. Cerebrospinal fluid (CSF) biomarker 257

levels of Aβ, tau, and P-tau protein have also been recorded. Additionally, the clinical 258

data reports patient scores from a battery of neuropsychological tests. A Functional 259

Activities Questionnaire (FAQ) assesses the patient’s level of independence to perform 260

daily tasks. Everyday cognitive evaluations (Ecog) of the patient’s ability to carry out 261
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everyday tasks are reported by the patient (self) and a study partner. Reported scores 262

for Mini-Mental State Exam (MMSE), Montreal Cognitive Assessment (MOCA), Rey’s 263

Auditory Verbal Learning Test (RAVLT), Alzheimer’s Disease Assessment Scale 264

(ADAS), Modified Preclinical Alzheimer Cognitive Composite (mPACC), Digit Span 265

memory test (DIGITSCOR), Trail Making test (TRABSCOR) and Logical Memory 266

Delayed Recall Total Number of Story Units Recalled (LDELTOTAL) are used to 267

estimate the severity and progression of cognitive and memory impairment. MRI 268

measurements of hippocampal, intracranial, mid-temporal, fusiform, ventricle, 269

entorhinal, and whole brain volume are also reported. 270

In the ADNI clinical data, PIB levels, Ecog scores, Aβ levels, tau protein levels, and 271

DIGITSCOR were missing for a substantial proportion of patients. Therefore, we 272

utilized k-nearest neighbors (kNN) imputation for handling missing data. kNN 273

imputation selects k subjects that are similar to the subject with missing values and is 274

preferred for its ability to handle continuous, categorical, and discrete data in our 275

dataset. Moreover, kNN imputation is shown to improve multiclass prediction of disease 276

in ADNI. [32] We performed imputation in R v4.2.1 using DMwR (data mining with R) 277

package v0.0.2, on clinical features with less than 60% missing data. We set k = 5 as 278

the minimum number of neighbors from which the missing values could be inferred. 279

Imputation was performed on the training dataset and then applied to the test and 280

validation datasets. Only clinical features measured at the time of diagnosis were 281

retained, ie., baseline features were removed. The target variable (i.e., diagnosis of CN, 282

MCI, or AD) was not included in the procedure. 283

The proposed c-Triadem model 284

The proposed c-Triadem is a constrained artificial neural network multiclass classifier 285

which aims to accurately predict the patient’s status as CN, MCI, or AD using their 286

genotyping, gene expression, and clinical data. The data pre-processing, model 287

development, and interpretation steps involved in c-Triadem are depicted in the block 288

diagram of Figure 3. In particular, in c-Triadem, the genotype and gene expression 289

inputs consist of nodes that represent genes and are fed into constrained subnetworks. 290

The nodes and edges of the hidden layers in the two subnetworks (for genotype and 291

gene expression) represent Reactome pathways and their biological relationships, 292

respectively. We chose to incorporate Reactome into our deep learning model due to its 293

hierarchical organization and a data model which makes pathways computationally 294

accessible. [49] Reactome data was provided by Elmarakeby et al. [50] in their repository 295

(https://zenodo.org/record/5163213#.Y7wZgNVBxPY). By representing the genes, 296

pathways, and connections among them as nodes and edges in the subnetworks, we can 297

better understand the biological connections which are important for the prediction. 298

Thus, the model’s interpretability is enhanced compared to a dense network with similar 299

architecture. 300

Each subnetwork consists of one input layer with 10,151 nodes representing the 301

genes and three non-trainable hidden layers with nodes representing pathways. Due to 302

the constraints on the edges connecting the genes and pathways, the sparsely connected 303

subnetwork has 32,842 parameters. The constraints are encoded as a binary weights 304

matrix which sets all non-existent connections among the genes and pathways to zero. 305

In addition to the genotyping and gene expression input, a third input of clinical 306

data is provided. The clinical data with 45 nodes are concatenated along with the 307

output of the two subnetworks and passed through a batch normalization layer, followed 308

by two hidden layers. Kernel regularization is applied to both hidden layers. Bayesian 309

hyperparameter optimization was used to configure the hidden layer sizes, initial 310

learning rate, step interval for learning rate schedule, choice of activation function, and 311

kernel regularization of the hidden layers, by monitoring the validation accuracy over 80 312
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Fig 3. Methodology block diagram
An overview of data preprocessing, model development, and interpretation is presented
in the flow diagram.
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Fig 4. c-Triadem model architecture
Sn represents the nth sample and Gn represents the nth gene. Dummy values are
provided for input data types.

epochs. A random state was set beforehand to ensure consistent results. The first 313

hidden layer is configured with 19 nodes and linear activation followed by another 314

hidden layer with 8 nodes and Rectified Linear Units (ReLU) activation. A dropout 315

layer (rate = 0.597) is included in between the hidden layers. Overall, our network 316

contains 44,239 parameters and 15 layers. Excluding the non-trainable parameters in 317

the subnetworks, we have 11,397 trainable parameters for three types of input 318

representing 20,347 features, whereas an unconstrained network with similar 319

architecture contains over 37 million parameters. 320

Model training 321

We empirically observed a four-fold reduction in training time for our model (training 322

time of 0 minutes and 18.905 seconds) compared to the unconstrained model (1 minute 323

and 18.862 seconds) on an Intel Core i5 8th Gen CPU (central processing unit) with a 324

clock speed of 1.6-1.8 GHz. Our model was compiled with an adaptive learning rate 325

initially set at 0.008 with exponential decay occurring every 17 steps at a rate of 0.96. 326

Model training was performed with the Adam optimizer to reduce categorical 327

cross-entropy loss. We used Python v3.8 with the Functional API (Application 328

Programming Interface) of keras v2.4.3 to design and train c-Triadem on genotyping, 329

gene expression, and clinical data from ADNI participants. The dataset comprises 212 330

CN, 317 MCI, and 97 AD samples. We applied a train/test/validation split of 331

56-30-14%. We used target-based stratification during the test-train split followed by 332

Synthetic Minority Over-sampling Technique (SMOTE) to address the imbalance in the 333

datasets. Min-max scaling was performed on the training data and transferred to the 334

validation and test datasets. The target was one-hot encoded prior to training. 335

Along with kernel regularization and dropout, early stopping callbacks on validation 336

loss were used to prevent overfitting. We used the default batch size of 32 and set the 337

maximum number of epochs at 120. The output is converted to respective CN, MCI, 338

and AD probabilities by softmax, with the higher probability used for the classification 339

of disease status. A representation of the model architecture is provided in Figure 4. 340
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Model performance evaluation 341

We evaluated the performance of our model on the validation and test datasets. We 342

used the area under the receiver operating characteristic (AUC) curve, accuracy, 343

precision, recall, and the F1 score as performance metrics, and their formulae are listed 344

below. We defined true positives (TP), true negatives (TN), false positives (FP), and 345

false negatives (FN) for each predicted class (CN, MCI, and AD). For instance, for the 346

AD class, TP is the number of AD samples predicted correctly. TN is the number of 347

non-AD samples predicted as MCI or CN. FP is the number of MCI and CN samples 348

predicted as AD. FN is the number of AD samples predicted as MCI or CN. 349

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

350

Precision =
TN

TN + FP
(2)

351

Recall =
TP

TP + FN
(3)

352

F1 score = 2× Precision×Recall

Precision+Recall
(4)

Model interpretation and identification of potential biomarkers 353

Model interpretation is essential to gain user trust and overcome the ’black box’ 354

reputation of deep learning models. Lundberg and Lee [27] proposed SHAP values as a 355

unified measure of feature importance, computed using game theory. To calculate 356

SHAP values, each individual feature’s contribution to the predicted value is estimated 357

by comparing predictions over different combinations of features. The SHAP value for a 358

feature is the average of all the marginal contributions to predictions from all possible 359

feature combinations. To evaluate the importance of specific genes and clinical data, we 360

computed SHAP values on all features using the shap package v0.41.0%. 361

Interaction network analysis 362

In order to gain mechanistic insights and validate the reliability of our model, we 363

thoroughly investigated the interaction network among genes that were prioritized by 364

SHAP. Specifically, we extracted the SHAP-prioritized genes from the top 20 features 365

for each group (CN,MCI, and AD). To explore the functional associations between these 366

genes, we employed STRING, a resource that leverages diverse types of evidence, 367

including experimental data, to identify such connections. By examining the interaction 368

network within STRING [51], we aimed to elucidate the intricate relationships and 369

potential collaborative roles among these genes. Moreover, we also conducted an 370

analysis to identify enriched pathways for the selected genes. This allowed us to gain 371

further insights into the biological processes and molecular mechanisms underlying the 372

observed gene interactions. By comprehensively studying the gene interaction network 373

and identifying enriched pathways, we aimed to reinforce the validity and biological 374

relevance of our model’s predictions. 375

Intermediate layer activation 376

To investigate and compare the activation values of intermediate layers in our model, we 377

randomly selected inputs from each prediction class, namely cognitively normal (CN), 378

mild cognitive impairment (MCI), and Alzheimer’s disease (AD). In this context, 379

activation refers to the signed outcome of a node based on its inputs. To determine the 380
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significance of differences in activation values, we conducted the Kruskal-Wallis 381

statistical test. This analysis allowed us to assess the variations in activations across the 382

different prediction classes in a rigorous and quantitative manner. 383

Statistical analysis 384

Significant distinctions in clinical features among cognitively normal (CN), mild 385

cognitive impairment (MCI), and Alzheimer’s disease (AD) subjects were examined 386

through rigorous statistical analyses. The age of onset and years of education were 387

subjected to an analysis of variance (ANOVA) test to assess their significance. Similarly, 388

the proportion of male and female participants, as well as the presence of the APOE ϵ4 389

allele, were evaluated using the Chi-square contingency test. For the remaining clinical 390

variables, the non-parametric Kruskal-Wallis test was employed. It is important to note 391

that all statistical analyses were conducted with a significance level of 95 392
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Table 2. ADNI neuropsychological test clinical data summary showing average values with standard deviation. Statistical
significance (95% significance level) was tested using analysis of Kruskal-Wallis test for all Neuropsychological test and other
variables.

CN MCI AD P-value
Neuropsychological tests
Clinical Dementia Rating – Sum
of Boxes (CDRSB)

0.069±0.296 1.427±1.016 6.069±2.789 <0.001

Mini-Mental State Examination
(MMSE)

29.057±1.244 28.054±1.700 20.915±4.609 <0.001

Logical Memory Delayed Recall To-
tal Number of Story Units Recalled
(LDELTOTAL)

14.110±3.464 7.933±3.681 1.624±2.734 <0.001

Trail making test score (TRAB-
SCOR)

82.178±37.885 107.058±57.909 193.654±82.489 <0.001

Functional Activities Question-
naire (FAQ)

0.239±1.065 2.644±3.885 17.24±27.269 <0.001

Montreal Cognitive Assessment
(MOCA)

25.457±2.452 23.413±3.155 16.35±25.257 <0.001

Modified Preclinical Alzheimer Cognitive Composite (mPACC)
mPACCdigit 0.118±2.936 -4.858±4.221 -19.020±7.324 <0.001
mPACCtrailsB 0.049±2.660 -4.231±3.783 -17.068±7.076 <0.001
Alzheimer’s disease assessment scores (ADAS)
ADAS11 5.818±2.836 8.984±4.442 22.160±9.332 <0.001
ADAS13 9.327±2.938 14.348±4.706 32.904±8.695 <0.001
ADASQ4 2.938±1.669 4.706±2.488 8.695±1.751 <0.001
Rey’s Auditory Verbal Learning Test (RAVLT
Immediate recall 45.340±10.550 37.109±10.879 20.844±8.533 <0.001
Learning 5.718±2.323 4.826±2.598 1.744±1.827 <0.001
Forgetting 3.995±2.848 4.553±2.552 4.122±2.634 0.01356
Percent forgetting 37.456±27.337 53.836±30.898 87.352±56.219 <0.001
Everyday Cognition scores (Ecog) – Patient self-reported
Memory 1.540±0.440 2.230±0.675 2.433±0.824 <0.001
Language 1.379±0.382 1.835±0.590 1.831±0.757 <0.001
Visual, Spatial and Perceptual
Abilities

1.133±0.230 1.393±0.518 1.675±0.725 <0.001

Executive Functioning – Planning 1.137±0.246 1.471±0.549 1.693±0.754 <0.001
Executive Functioning – Organiza-
tion

1.289±0.399 1.625±0.678 1.838±0.852 <0.001

Executive Functioning – Divided
attention

1.454±0.510 1.927±0.769 1.913±0.814 <0.001

Total 1.330±0.297 1.769±0.517 1.919±0.680 <0.001
Everyday Cognition scores – Study partner report
Memory 1.274±0.350 2.138±0.797 3.505±0.510 <0.001
Language 1.128±0.218 1.681±0.680 2.697±0.792 <0.001
Visual, Spatial and Perceptual
Abilities

1.073±0.189 1.425±0.574 2.678±0.841 <0.001

Executive Functioning – Planning 1.096±0.232 1.570±0.667 2.968±0.837 <0.001
Executive Functioning – Organiza-
tion

1.142±0.357 1.673±0.778 3.149±0.790 <0.001

Executive Functioning – Divided
attention

1.220±0.387 1.928±0.820 3.183±0.851 <0.001

Total 1.156±0.222 1.743±0.607 3.020±0.630 <0.001
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Table 3. Performance comparison of multiclass methods using ADNI data.
Model Inputs Accuracy AUC F1 score Reference
c-Triadem 2=Clinical,

SNPs and ex-
pression data

0.893 0.972 0.893 This work

Unconstrained
dense network

0.866 0.960 0.869

Deep model Clinical data
only

0.760 NA 0.760 Venugopalan et al., 2021 [30]

Deep model Clinical data +
SNPs

0.780 NA 0.780 Venugopalan et al., 2021 [30]

Stage-wise deep net-
work

SNPs only 0.541 NA NA Zhou et al., 2019 [31]

Gradient boosting
classifier with Soft
Impute

Clinical data
only

0.6503 NA 0.6305 Aghili et al., 2022 [32]

Table 4. ADNI genotyping data summary. ADNI-GO: Alzheimer’s Disease Neuroimaging Initiative Grand Opportunity
Phase Platform Variants Participants Genome assembly DbSNP build
ADNI1 Illumina Hu-

man 610-Quad
BeadChip

620901 SNP
and CNV mark-
ers

757 hg18 129

ADNIGO/ADNI2 Illumina Hu-
man OmniEx-
press BeadChip

730525 SNP
and CNV mark-
ers

793 hg18 129

ADNI3 Illumina Omni
2.5M (WGS
Platform)

759993 SNP
and CNV mark-
ers

327 hg38 155
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