It is made available under a CC-BY-NC-ND 4.0 International license.

c-Triadem: A constrained, explainable deep learning model to identify novel biomarkers in Alzheimer's disease

Sherlyn Jemimah¹, Ferial Abuhantash¹, Aamna AlShehhi^{1,2*}

1 Department of Biomedical Engineering and Biotechnology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates 2 Healthcare Engineering Innovation Center, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates

* aamna.alshehhi@ku.ac.ae

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder that requires early diagnosis for effective management. However, issues with currently available diagnostic biomarkers preclude early diagnosis, necessitating the development of alternative biomarkers and methods, such as blood-based diagnostics. We propose c-Triadem (constrained triple-input Alzheimer's disease model), a novel deep neural network to identify potential blood-based biomarkers for AD and predict mild cognitive impairment (MCI) and AD with high accuracy. The model utilizes genotyping data, gene expression data, and clinical information to predict the disease status of participants, i.e., cognitively normal (CN), MCI, or AD. The nodes of the neural network represent genes and their related pathways, and the edges represent known relationships among the genes and pathways. We trained the model with blood genotyping data, microarray, and clinical features from the Alzheimer's Neuroimaging Disease Initiative (ADNI). We demonstrate that our model's performance is superior to previous models with an AUC of 97% and accuracy of 89%. We then identified the most influential genes and clinical features for prediction using SHapley Additive exPlanations (SHAP). Our SHAP analysis shows that CASP9, LCK, and SDC3 SNPs and PINK1, ATG5, and ubiquitin (UBB, UBC) expression have a higher impact on model performance. Our model has facilitated the identification of potential blood-based genetic markers of DNA damage response and mitophagy in affected regions of the brain. The model can be used for detection and biomarker identification in other related dementias.

Author Summary

C-Triadem, our novel developed deep neural network, accurately predicts moderate cognitive impairment (MCI) and Alzheimer's disease (AD) while identifying potential blood biomarkers for AD. Current diagnostic methods have limitations, emphasizing the critical need for early AD detection. Our model integrates genetic, gene expression, and clinical data to differentiate among cognitively normal individuals, MCI, and AD cases. Training and validation using Alzheimer's Disease Neuroimaging Initiative (ADNI) data demonstrate superior performance, with a 97% AUC and 89% accuracy, surpassing previous models. SHapley Additive exPlanations (SHAP) analysis highlights key clinical features (e.g., MMSE scores, brain volume) and genes (e.g., CASP9, LCK, SDC3), revealing potential genetic markers and pathways in blood associated with AD. By

It is made available under a CC-BY-NC-ND 4.0 International license.

incorporating Reactome pathways, our approach enhances interpretability, providing insight into the biological context of predictions. In summary, c-Triadem represents a significant advancement in AD diagnostics, enabling earlier and more accurate diagnoses for improved treatment strategies.

Introduction

Alzheimer's disease (AD) is the most common form of dementia, characterized by a ² gradual loss of cognition and memory. It is expected to affect around 78 million elderly ³ by 2030. [\[1\]](#page-14-0) While the APOE ϵ 4 allele, mutations in presenilin-I and APP (amyloid precursor protein) are established genetic markers, [\[2\]](#page-14-1) AD is considered a multifactorial, ⁵ complex disease driven by both genetic and environmental factors. [\[3\]](#page-14-2) The AD hallmarks include amyloid- β (A β) deposition and formation of neurofibrillary tangles (NFT) such as tau protein aggregates. [\[4\]](#page-14-3) Its early symptoms are traced by the higher rates of neurodegeneration in the entorhinal cortex and hippocampus cornu ammonis 1 region, $[5, 6]$ $[5, 6]$ which correlated with increased NFT in this regions. $[7]$

AD hallmarks are used by the National Institute on Aging and Alzheimer's 11 Association (NIA-AA) to categorize existing AD biomarkers under $A\beta$ deposition, pathologic tau, and neurodegeneration $[AT(N)]$ research framework, enabling a 13 biological definition of AD. [\[8\]](#page-14-7) However, the diagnostic modalities for $AT(N)$ biomarkers 14 (such as MRI (magnetic resonance imaging), PET (positron emission tomography), and ¹⁵ lumbar puncture) are known to be expensive or invasive. Padala and Newhouse [\[9\]](#page-15-0) ¹⁶ -knowing that MRI and PET scans can cost up to US\$ 8,000 and US\$ 3,400 respectively. In contrast, blood tests are relatively cost-effective (up to US\$ 1,250). Therefore, clinical diagnosis through blood sampling has been proposed to make testing more ¹⁹ accessible and affordable for the patient population, and enable routine monitoring $[9]$; 20 as well as recent research has focussed on elucidating blood-based biomarkers, to ²¹ facilitate less-invasive diagnostic tests for AD. $[10-13]$ $[10-13]$ 22

Nonetheless, several hurdles remain for conventional biomarker testing in blood ²³ samples. One major issue is the quantitation of extremely low levels of $A\beta$ and tau proteins against a background with high levels of plasma proteins, such as albumin and ²⁵ immunoglobulin. The low levels of $A\beta$ and tau may be further subject to metabolization and clearing by physiological processes. [\[14\]](#page-15-3) While the issue may be $\frac{27}{27}$ overcome with ultrasensitive assays, [\[15\]](#page-15-4) the considerable degree of overlap in the levels $\frac{28}{28}$ of $A\beta$ between AD patients and cognitively normal individuals precludes its use as a 29 definitive blood marker by itself. [\[16\]](#page-15-5) Moreover, existing biomarkers for diagnosis require $\frac{30}{20}$ significant levels of $A\beta$ deposition and/or tau pathology for detection, precluding early $\frac{31}{21}$ diagnosis which is imperative for effective treatment. [\[17\]](#page-15-6) $\frac{32}{2}$

The disadvantages of conventional biomarkers in blood-based diagnostics highlight $\frac{33}{2}$ the need to develop novel methods and biomarkers which can facilitate accurate, early $\frac{34}{4}$ diagnosis, based on experimental evidence of changes in the blood cells of patients with $\frac{1}{35}$ MCI (mild cognitive impairment, ie., prodromal stage) and advanced AD. [\[18\]](#page-15-7) Polygenic ³⁶ risk scores capture the association of several gene loci with plasma biomarkers [\[19\]](#page-15-8) and $\frac{37}{27}$ are shown to improve accuracy in distinguishing cognitively normal (CN) and AD ³⁸ cases. [\[20\]](#page-15-9) Reddy et al. [\[21\]](#page-15-10) showed that plasma mRNA levels of an eQTL (expression $\frac{39}{20}$ quantitative trait locus)-curated gene panel significantly increased diagnostic accuracy ⁴⁰ and may also have utility in discriminating between different types of dementia. ⁴¹ Blood-based panels of potential biomarker genes have been identified using machine ⁴² learning (ML) for early detection of AD. $[17, 22]$ $[17, 22]$

With ML and artificial intelligence (AI), accurate and early diagnosis using $\frac{44}{40}$ multimodal, blood-based data is a distinct possibility. Several ML models have been ⁴⁵ proposed to distinguish between healthy CN, MCI, and advanced AD patients. Stamate ⁴⁶

It is made available under a CC-BY-NC-ND 4.0 International license.

et al. [\[23\]](#page-16-0) utilized plasma metabolites in an XGBoost model to achieve an AUC of 0.89 $\frac{47}{47}$ in distinguishing between AD and CN cases. Logistic regression using plasma levels of $\frac{48}{48}$ inflammatory proteins enabled the differentiation of AD from controls (AUC 0.79) and ⁴⁹ MCI subjects (AUC 0.74). [\[24\]](#page-16-1) A Random forest model of serum protein multiplex \sim 50 biomarker data attained an AUC of 0.91 in predicting AD and CN cases. [\[25\]](#page-16-2) Qui et $\frac{51}{10}$ al. $[26]$ proposed a deep learning framework that uses neuroimaging data and patient $\frac{52}{2}$ demographic information for binary classification of AD and cognitively normal $\frac{53}{2}$ participants with accuracy comparable to human experts. Advances in deep learning $\frac{54}{4}$ such as the development of the SHapley Additive exPlanations (SHAP) [\[27\]](#page-16-4) algorithm $\frac{55}{100}$ enable the investigation of multi-omic data with transparent, biologically relevant models, which is important to engender trust and facilitate adoption by clinicians. [\[28\]](#page-16-5) σ

In this study, we introduce c-Triadem, a constrained deep neural network 58 multiclass-classifier, which incorporates prior biological information in the form of $\frac{59}{2}$ Reactome pathways to accurately classify samples as CN, MCI, or AD. Genotyping, $\qquad 60$ gene expression, and clinical data from the Alzheimer's Disease Neuroimaging Initiative σ (ADNI) [\[29\]](#page-16-6) are used for training, validation, and testing. The significance of genetic $\frac{62}{2}$ and clinical features in the input is assessed by employing SHapley Additive 63 $exPlanations (SHAP)$. Further, we interrogate the intermediate layers to better 64 understand model behavior and gain mechanistic insights into the role of the genes ⁶⁵ identified as potential biomarkers. The proposed methodology, experimental data, ⁶⁶ results, and conclusions are presented in the following sections. $\frac{67}{67}$

$\textbf{Results}$ \blacksquare

Clinical cohort characteristics ⁶⁹

The cohort of selected ADNI participants includes 212 CN, 317 MCI, and 97 AD $\frac{1}{70}$ subjects. The clinical features after imputation are summarized in Tables [1](#page-3-0) and [2.](#page-19-0) In π general, the CN, MCI, and AD groups differ significantly in terms of mean age ($p < r₂₂$ 0.001) and proportion of female participants ($p = 0.012$). We also observe a higher $\frac{1}{2}$ proportion of AD patients with the APOE ϵ 4 allele compared to MCI and CN subjects τ $(p < 0.001)$. As expected, AD patients show significantly worse performance in neuropsychological tests ($p < 0.001$). Furthermore, measures of brain volume are lower τ_{6} in AD patients ($p < 0.001$) with the exception of ICV, which remains similar across the π groups. Brain functioning measures are also significantly impacted in AD with higher $\frac{8}{18}$ levels of AV45 and CSF tau protein, along with lower FDG uptake $(p < 0.001)$.

$\bf{Model~performance} \color{black} \color{black} \color{black} \color{black}$

With c-Triadem, we achieved an accuracy of 89% and an AUC of 97% on the test data. \Box We also developed an unconstrained dense network with similar architecture (accuracy ⁸² 87% and AUC 96%) for comparison and were able to demonstrate c-Triadem's superior $\frac{1}{3}$ performance. We also tested whether our model may be refined by additional pathway 84 layers. Training our model with two additional pathway layers in each subnetwork ⁸⁵ produced comparable results with an AUC of 96% and an accuracy of 88% . The $\frac{86}{100}$ performance of our model compared to other available machine learning classifiers on $\frac{1}{87}$ ADNI data is shown in Table [3.](#page-20-1) 88

Model explanation ⁸⁹

To examine the importance of specific genes and clinical features in model prediction, $\frac{90}{2}$ we computed SHAP values in the constrained model for the three types of input, i.e., $\frac{91}{2}$

It is made available under a CC-BY-NC-ND 4.0 International license.

	\mathbf{CN}	MCI	AD	P-value				
Number of samples	212	317	97					
APOE ϵ 4 allele present	58	154	77	< 0.001				
Gender (\overline{female})	105	131	31	0.012				
Age	74.620±5.444	72.069 ± 7.462	74.723±7.594	${<}0.001$				
Years of education	16.231 ± 2.675	15.911 ± 2.747	16.175 ± 2.912	0.384				
Brain functioning and clinical tests								
FDG uptake	1.299 ± 0.112	1.267 ± 0.128	1.045 ± 0.150	< 0.001				
AV45 uptake	1.103 ± 0.182	1.193 ± 0.226	1.341 ± 0.243	${<}0.001$				
Level of tau protein in CSF	247.913 ± 81.605	266.968±122.224	374.673±143.266	< 0.001				
Brain volume measurements from MRI								
Ventricles	34517.162 ± 18550.933	38657.239±22996.339	55538.765±25105.972	< 0.001				
Hippocampus	7270.301±956.410	7031.596±1113.513	5436.083 ± 1067.069	< 0.001				
Entorhinal complex	3754.567±666.689	3681.1867±23.034	2610.140 ± 694.886	${<}0.001$				
Fusiform complex	18144.345±2461.023	18383.708±2776.218	15072.561 ± 2330.017	${<}0.001$				
Mid-temporal	19974.678±2681.839	20479.689 ± 2777.653	16467.175±3162.854	${<}0.001$				
Intracranial volume (ICV)	1500236.243±156407.973	$1530645.222 \pm 151053.965$	1546662.105±191022.847	0.0977				
Whole brain	1018671.177±107104.069	1052311.884±109453.752	$955524.111 \pm 118730.033$	< 0.001				

Table 1. ADNI demographics and brain test variable clinical data summary showing average values with standard deviation. Statistical significance (95% significance level) was tested using analysis of variance (ANOVA) for the age of onset and years of education, Chi-square contingency for gender proportions and APOE ϵ4 allele, and Kruskal-Wallis test for all other variables.

SNPs, gene expression, and clinical features. Beeswarm plots for the top 20 features in $\frac{92}{2}$ each type of input are provided in Figure [1.](#page-4-0)

\textbf{SNPs} 94

The SHAP beeswarm plots for SNPs are depicted in Figures [1a](#page-4-0) for CN prediction, [1d](#page-4-0) $\frac{1}{95}$ for MCI prediction, and [1g](#page-4-0) for AD prediction. SNPs found in genes such as CASP9, $\frac{96}{100}$ LCK, and SDC3 have been prioritized by the SHAP scores, showing their influence on $\frac{97}{20}$ model behavior. We performed a network analysis with STRING (Search Tool for $\frac{98}{96}$ Interacting Genes/Proteins) using the selected genes to identify enriched biological pathways, as described in the Methodology section 4.6. The resulting network contains ¹⁰⁰ 40 edges (protein-protein interaction (PPI) enrichment p-value 0.0157), which suggests ¹⁰¹ that the genes are biologically connected. More than three-fourths of the interactions $_{102}$ have been experimentally validated or extracted from curated databases. Notably 103 enriched pathways include cellular response to stress (network strength $\langle NS \rangle$ of 0.92 $_{104}$ with false discovery rate (FDR) of 0.00018) and CD28 costimulation (NS 1.74 with FDR $_{105}$ 0.00055). CD28 is expressed by T-cells and is essential for T-cell proliferation and ¹⁰⁶ cytokine production.

$\mathbf G$ ene expression $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

The SHAP beeswarm plots for gene expression are depicted in Figures [1b](#page-4-0) for CN 109 prediction, [1e](#page-4-0) for MCI prediction, and [1h](#page-4-0) for AD prediction. The expression of CCNE1, ¹¹⁰ ATG5, MAP1LC3B, RB1, UBC, TOMM20, and PINK1 are marked as significant for $\frac{111}{111}$ model prediction with SHAP. We examined the protein-protein interaction network 112 using STRING to identify enriched pathways among the selected genes. The network 113 contains 164 edges (PPI enrichment p-value $< 1.0 \times 10^{-16}$), with the vast majority 114 being experimentally validated and/or extracted from curated databases, indicating 115 biological relevance. Enriched pathways include aggrephagy (NS 2.12, FDR 0.0082), ¹¹⁶ mitophagy (NS 1.99, FDR 0.0119), autophagosome assembly (NS 1.52, FDR $_{117}$

medRxiv preprint doi: [https://doi.org/10.1101/2024.11.19.24317595;](https://doi.org/10.1101/2024.11.19.24317595) this version posted November 20, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has grante

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

SHAP scores colored by feature values are presented for each feature and prediction class. Plots show the impact of top 20 (a, d, g) aggregated SNPs features, (b, e, h) microarray gene expression data, and (c, f, i) clinical data for (a, b, c) CN, (d, e, f) MCI and (g, h, i) AD prediction, respectively.

It is made available under a CC-BY-NC-ND 4.0 International license.

 9.02×10^{-5}) and selective autophagy (NS 1.69, FDR 0.0027). Further, pathways related 118 to DNA damage response (NS 1.78, FDR 7.36×10^{-7}) and nucleotide repair (NS 1.83, 119 FDR 9.27×10^{-5}) have been enriched.

Clinical features and the contract of the cont

The SHAP beeswarm plots for clinical features are depicted in Figures [1c](#page-4-0) for CN 122 prediction, [1f](#page-4-0) for MCI prediction, and [1i](#page-4-0) for AD prediction. We observed that the ¹²³ clinical features, such as MMSE, Ecog, FAQ, RAVLT immediate recall, RAVLT learning ¹²⁴ and CDRSB scores are highly impactful in prediction of AD. Other clinical features 125 with significant influence on model prediction include whole brain volume, presence of $_{126}$ $\text{APOE } \epsilon4$ allele, age, and uptake levels of FDG and AV45.

\blacksquare Intermediate layer activation 128

Nodes with significant differences in activation across CN, MCI, and AD inputs 129 represent pathways through which genotyping and gene expression inputs impact 130 c-Triadem predictions. Therefore, we examined node activation in the intermediate ¹³¹ layers of the subnetworks. We observed differences in activation at all three hierarchy 132 levels in our model. Figure [2](#page-6-0) depicts the kernel density estimation curves for pathway ¹³³ nodes in the intermediate layers of the subnetworks with significant differences in ¹³⁴ activation. At the lowest level, we observed differences in activation among the nodes 135 representing PLC γ 1 (phospholipase-c gamma 1) signaling, neutrophil degranulation, 136 and TRKA (tropomyosin receptor kinase A) activation by NGF (nerve growth factor). 137 Differentially activated pathways at the second level include DNA double-stranded 138 break response, formation of apoptosomes, and caspase activation via death receptors. ¹³⁹ Third-level pathways include cytochrome-c mediated apoptotic response, caspase ¹⁴⁰ activation, and signaling by NOTCH and FLT3.

\sum iscussion \sum 142

In this study, we have described our model c-Triadem, a constrained multimodal deep $_{143}$ neural network multiclassifier that accurately predicts the patient's disease status as ¹⁴⁴ either CN, MCI, or AD on the basis of their genotyping, gene expression, and clinical 145 data. The input layers contain nodes encoding genes and their respective biological 146 pathways, and edges are constrained to reflect known relationships among the genes and ¹⁴⁷ pathways. The pathway information was taken from the Reactome pathway database, ¹⁴⁸ which systematically associates proteins with their functional role in biological pathways, $_{149}$ and connects pathways hierarchically. We have shown that our model has superior 150 performance compared to previous deep neural networks trained with the ADNI dataset. ¹⁵¹

SHAP scores enable the identification of genetic and clinical features which explain 152 the model predictions. From the STRING interaction networks, it is observed that the ¹⁵³ genes prioritized by SHAP (such as CASP9, LCK, SDC3, CCNE1, ATG5, UBC, and ¹⁵⁴ TOMM20) are associated with each other in AD-related biological pathways. The gene ¹⁵⁵ CASP9 (caspase-9) is a cysteine-aspartic protease that serves as an initiator for $_{156}$ apoptosis. CASP9 is well-studied in neurodegenerative diseases, with increasing levels of $_{157}$ CASP9 implicated in AD brains as well as platelet-rich plasma. $[33-35]$ $[33-35]$ LCK 158 (lymphocyte-specific protein tyrosine kinase) is located in a well-known linkage ¹⁵⁹ region [\[36\]](#page-17-0) and has been named a risk factor for AD. [\[37\]](#page-17-1) Mouse studies suggest that $_{160}$ LCK inhibition alters spatial learning and impairs long-term memory. [\[38\]](#page-17-2) SDC3 161 (Syndecan-3, a proteoglycan) expression in PBMC has been correlated with \overrightarrow{AB} and has 162 been suggested as a potential biomarker for the diagnosis of early AD. [\[39\]](#page-17-3) Several ¹⁶³

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

Fig 2. Kernel density estimation curves for intermediate layers Kernel density estimation curves are presented for pathways with significant differences

in activation (established by the Kruskal-Wallis test) at all three levels of hierarchy for (a) SNPs and (b) gene expression data. The P-value for each pathway is reported adjacent to the graph.

It is made available under a CC-BY-NC-ND 4.0 International license.

studies have identified dysfunctional mitophagy as an early marker of Alzheimer's ¹⁶⁴ disease, driving amyloid- β aggregation and neurofibrillary tangle formation. [\[40\]](#page-17-4) 165 Mitophagy and aggrephagy refer to the autophagic clearance of damaged mitochondria 166 and protein aggregates respectively. Reduced levels of mitophagy markers ATG5 and 167 Parkin have been demonstrated in MCI and AD patients. [\[41\]](#page-17-5) Given that 168 hypometabolism caused by impaired energy metabolism is one of the earliest possible $_{169}$ markers of AD, genes related to mitophagy may serve as potential biomarkers for AD $_{170}$ diagnosis in the early stages. Additionally, SHAP-selected clinical features (RAVLT $_{171}$ scores, specifically immediate recall and percent forgetting) have a strong association 172 with brain structural atrophy. [\[42\]](#page-17-6) 173

The constrained model also allows the identification of biological pathways which ¹⁷⁴ emphasize the differences among the three diagnostic groups. Moreover, the selected $_{175}$ pathways with significant differences in intermediate node activation (such as $PLC\gamma1$ 176 signaling, TRKA activation by NGF, DNA double-stranded break response, and caspase $\frac{177}{200}$ activation) reinforce SHAP findings. For instance, SHAP-selected CASP-9 works 178 through the caspase activation pathway identified by intermediate node activation. The ¹⁷⁹ findings are also supported by previous studies. It is known that $PLC\gamma1$ activation is 180 reduced in PBMC samples from AD patients. [\[43\]](#page-17-7) Deficiencies in the TRKA/NGF axis $_{181}$ are implicated in the depletion of cholinergic neurons and cognitive decline in AD. [\[44\]](#page-17-8) ¹⁸²

Recent studies indicate that the development of AD is associated with systemic 183 changes in the neuronal environment reflected in other parts of the body. Studies in ¹⁸⁴ peripheral blood mononuclear cells (PBMCs) from amnestic MCI and AD patients show ¹⁸⁵ differential expression of senescence markers, such as cell cycle blockade (p16 and p53) 186 and DNA damage response (γ H2AX). [\[18\]](#page-15-7) Garfias et al. [\[45\]](#page-17-9) have reported significantly $_{187}$ higher levels of activated lymphocytes in AD patients. Moreover, a gene expression 188 analysis of PBMC samples in the AddNeuroMed cohort [\[46\]](#page-17-10) identified DEGs ¹⁸⁹ (differentially expressed genes) significantly enriched in pathways related to T-cell and ¹⁹⁰ neutrophil activation in immune response, lymphocyte differentiation, protein ¹⁹¹ serine/threonine kinase activity, GTPase and DNA transcription factor binding. [\[47\]](#page-17-11) In 192 our study, we have identified potential genetic markers of amyloidosis, immune ¹⁹³ activation, DNA damage response, and dysfunctional mitophagy in blood-derived ¹⁹⁴ genetic data. Further, the information from enriched pathways provides mechanistic ¹⁹⁵ insights into AD pathogenesis. $\frac{196}{200}$

While our model has been validated through network analysis and consistency with 197 literature reports, we recognize that multimodal data from additional cohorts would ¹⁹⁸ corroborate our findings. As more data become available, we hope to refine our model ¹⁹⁹ and establish its validity on other independently curated datasets. We also intend to ²⁰⁰ incorporate non-coding SNP data and other data modalities to improve performance, as $_{201}$ non-coding SNPs may affect gene regulation and expression indirectly, thus revealing $_{202}$ more mechanistic insights into AD pathology. Our model uses explainable AI to probe 203 multi-omic data for genes and clinical features associated with AD pathogenesis and ²⁰⁴ provides further transparency by exposing the biological pathways which influence its ²⁰⁵ predictions. As a result, we firmly believe that c-Triadem holds the potential to ²⁰⁶ facilitate precise and early diagnosis of AD, as well as other forms of dementia.

$\mathbf M$ aterials and methods $\qquad \qquad \qquad \Box$

Dataset ²⁰⁹

Alzheimer's Disease Neuroimaging Initiative 210

Data used in the preparation of this article were obtained from the Alzheimer's Disease $_{211}$ Neuroimaging Initiative (ADNI) database. ADNI was launched in 2003 as a ²¹²

It is made available under a CC-BY-NC-ND 4.0 International license.

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The ²¹³ primary goal of ADNI has been to test whether serial magnetic resonance imaging ²¹⁴ (MRI), positron emission tomography (PET), other biological markers, and clinical and ²¹⁵ neuropsychological assessment can be combined to measure the progression of mild ²¹⁶ cognitive impairment (MCI) and early Alzheimer's disease (AD) . For up-to-date information, see https://adni.loni.usc.edu/. In addition to MRI and PET neuroimaging $_{218}$ of patients at regular intervals, ADNI has collected and analyzed whole blood samples ²¹⁹ for genotyping and gene expression analysis. Blood gene expression profiling was 220 conducted using Affymetrix Human Genome U219 Array for 744 samples in the 221 ADNI2/ADNI-GO (Grand Opportunity) phase. Blood genotyping and gene expression $_{222}$ methods for ADNI have been described in detail by Saykin et al. [\[29\]](#page-16-6) The ADNI studies $_{223}$ were approved by institutional review boards of all participating institutions, and $_{224}$ written informed consent was obtained from all participants or authorized 225 representatives. [\[29\]](#page-16-6). The study protocol obtained approval from the human research ²²⁶ committees at each involved institution, and informed consent was provided by all 227 participants or their legal guardian(s)/legally authorized representatives. The research ²²⁸ procedures strictly adhered to applicable guidelines and regulations [\[52,](#page-18-0) [53\]](#page-18-1). Table [4](#page-20-2) 229 presents a summary of the genotyping data provided by ADNI. ²³⁰

We selected sample data from 626 participants that had both SNP data and gene $_{231}$ expression data for training, testing, and validation in the deep learning model. Out of 232 626 participants, 212 were CN, 317 participants had MCI and 97 were diagnosed with ²³³ dementia due to AD. The criteria for AD and MCI diagnosis in ADNI are detailed by ²³⁴ Petersen. [\[48\]](#page-17-12) 235

Genotype data and the control of the contr

Genotyping data were downloaded in PLINK binary format, consisting of .bed, .bim 237 and .fam files. The .bed file is the primary representation of genotype calls of biallelic 238 variants. The .bim file accompanies the .bed file and provides extended variant ²³⁹ information, i.e., SNP IDs, base-pair coordinates, and allele information. The .fam file ²⁴⁰ provides sample information, including parent roster IDs and phenotype. We utilized ²⁴¹ the . bim file to identify the presence of variants and encoded SNPs using additive $_{242}$ representation (i.e., $0 =$ homozygous dominant, $1 =$ heterozygous, $2 =$ homozygous 243 recessive). We used the dbSNP ID as the unique identifier for SNPs. We then mapped ₂₄₄ SNPs that occur in coding sequences (CDS) to their corresponding gene loci. Input ²⁴⁵ values represent the aggregate additive value of all SNPs mapped to the coding ²⁴⁶ sequences of individual genes. The SNP data along with gene expression data represent $_{247}$ two of the inputs for the model.

Clinical data 249

Clinical data include demographic information, scores from neuropsychological tests, brain volume measurements, and levels of clinical biomarkers of AD, such as $A\beta$, tau protein, and FDG uptake. Patient demographic information includes age, gender, ethnicity, racial category, marital status, and years of education. The demographic data ²⁵³ were encoded as categorical variables before model training. Genotype information (ie. ²⁵⁴ presence of APOE ϵ 4) is also included. Brain functioning as measured by $_{255}$ fluorodeoxyglucose (FDG), PIB (Pittsburgh compound B), and amyloid detection $_{256}$ ligand $(AV45)$ uptake with PET are reported. Cerebrospinal fluid (CSF) biomarker 257 levels of $A\beta$, tau, and P-tau protein have also been recorded. Additionally, the clinical $_{258}$ data reports patient scores from a battery of neuropsychological tests. A Functional ²⁵⁹ Activities Questionnaire (FAQ) assesses the patient's level of independence to perform ²⁶⁰ daily tasks. Everyday cognitive evaluations (Ecog) of the patient's ability to carry out $_{261}$

It is made available under a CC-BY-NC-ND 4.0 International license.

everyday tasks are reported by the patient (self) and a study partner. Reported scores $_{262}$ for Mini-Mental State Exam (MMSE), Montreal Cognitive Assessment (MOCA), Rey's ²⁶³ Auditory Verbal Learning Test (RAVLT), Alzheimer's Disease Assessment Scale ²⁶⁴ (ADAS), Modified Preclinical Alzheimer Cognitive Composite (mPACC), Digit Span ²⁶⁵ memory test (DIGITSCOR), Trail Making test (TRABSCOR) and Logical Memory $_{266}$ Delayed Recall Total Number of Story Units Recalled (LDELTOTAL) are used to ²⁶⁷ estimate the severity and progression of cognitive and memory impairment. MRI ²⁶⁸ measurements of hippocampal, intracranial, mid-temporal, fusiform, ventricle, ²⁶⁹ entorhinal, and whole brain volume are also reported.

In the ADNI clinical data, PIB levels, Ecog scores, $A\beta$ levels, tau protein levels, and $_{271}$ DIGITSCOR were missing for a substantial proportion of patients. Therefore, we 272 utilized k-nearest neighbors (kNN) imputation for handling missing data. kNN $_{273}$ imputation selects k subjects that are similar to the subject with missing values and is $_{274}$ preferred for its ability to handle continuous, categorical, and discrete data in our ²⁷⁵ dataset. Moreover, kNN imputation is shown to improve multiclass prediction of disease ²⁷⁶ in ADNI. [\[32\]](#page-16-9) We performed imputation in R v4.2.1 using DMwR (data mining with R) $_{277}$ package v0.0.2, on clinical features with less than 60% missing data. We set $k = 5$ as 278 the minimum number of neighbors from which the missing values could be inferred. $_{279}$ Imputation was performed on the training dataset and then applied to the test and ²⁸⁰ validation datasets. Only clinical features measured at the time of diagnosis were $_{281}$ retained, ie., baseline features were removed. The target variable (i.e., diagnosis of CN, 282 MCI , or AD) was not included in the procedure.

The proposed c-Triadem model 284

The proposed c-Triadem is a constrained artificial neural network multiclass classifier 285 which aims to accurately predict the patient's status as CN, MCI, or AD using their $_{286}$ genotyping, gene expression, and clinical data. The data pre-processing, model 287 development, and interpretation steps involved in c-Triadem are depicted in the block 288 diagram of Figure [3.](#page-10-0) In particular, in c-Triadem, the genotype and gene expression 289 inputs consist of nodes that represent genes and are fed into constrained subnetworks. ²⁹⁰ The nodes and edges of the hidden layers in the two subnetworks (for genotype and ²⁹¹ gene expression) represent Reactome pathways and their biological relationships, ²⁹² respectively. We chose to incorporate Reactome into our deep learning model due to its ²⁹³ hierarchical organization and a data model which makes pathways computationally $_{294}$ accessible. [\[49\]](#page-17-13) Reactome data was provided by Elmarakeby et al. [\[50\]](#page-18-2) in their repository ²⁹⁵ $(\text{https://zenodo.org/record/5163213#}.Y7wZgNVBxPY).$ By representing the genes, $\frac{296}{2}$ pathways, and connections among them as nodes and edges in the subnetworks, we can ²⁹⁷ better understand the biological connections which are important for the prediction. 298 Thus, the model's interpretability is enhanced compared to a dense network with similar ²⁹⁹ architecture. $\frac{300}{200}$

Each subnetwork consists of one input layer with $10,151$ nodes representing the $\frac{301}{201}$ genes and three non-trainable hidden layers with nodes representing pathways. Due to $\frac{302}{20}$ the constraints on the edges connecting the genes and pathways, the sparsely connected ₃₀₃ subnetwork has $32,842$ parameters. The constraints are encoded as a binary weights $\frac{304}{204}$ matrix which sets all non-existent connections among the genes and pathways to zero. ³⁰⁵

In addition to the genotyping and gene expression input, a third input of clinical data is provided. The clinical data with 45 nodes are concatenated along with the $\frac{307}{200}$ output of the two subnetworks and passed through a batch normalization layer, followed ³⁰⁸ by two hidden layers. Kernel regularization is applied to both hidden layers. Bayesian ³⁰⁹ hyperparameter optimization was used to configure the hidden layer sizes, initial $\frac{310}{2}$ learning rate, step interval for learning rate schedule, choice of activation function, and $\frac{311}{2}$ kernel regularization of the hidden layers, by monitoring the validation accuracy over 80 σ ₃₁₂

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

An overview of data preprocessing, model development, and interpretation is presented in the flow diagram.

 S_n represents the nth sample and G_n represents the nth gene. Dummy values are provided for input data types.

epochs. A random state was set beforehand to ensure consistent results. The first $\frac{313}{2}$ hidden layer is configured with 19 nodes and linear activation followed by another $\frac{314}{2}$ hidden layer with 8 nodes and Rectified Linear Units (ReLU) activation. A dropout 315 layer (rate $= 0.597$) is included in between the hidden layers. Overall, our network $_{316}$ contains $44,239$ parameters and 15 layers. Excluding the non-trainable parameters in $_{317}$ the subnetworks, we have 11,397 trainable parameters for three types of input $\frac{318}{318}$ representing 20,347 features, whereas an unconstrained network with similar $\frac{319}{2}$ architecture contains over 37 million parameters. $\frac{320}{200}$

$\bf{Model \; training}$ 321

We empirically observed a four-fold reduction in training time for our model (training 322 time of 0 minutes and 18.905 seconds) compared to the unconstrained model $(1 \text{ minute}$ $_{323}$ and 18.862 seconds) on an Intel Core i5 8th Gen CPU (central processing unit) with a clock speed of 1.6-1.8 GHz. Our model was compiled with an adaptive learning rate ³²⁵ initially set at 0.008 with exponential decay occurring every 17 steps at a rate of 0.96. $\frac{326}{20}$ Model training was performed with the Adam optimizer to reduce categorical 327 cross-entropy loss. We used Python v3.8 with the Functional API (Application $\frac{328}{26}$ Programming Interface) of keras v2.4.3 to design and train c-Triadem on genotyping, $\frac{329}{20}$ gene expression, and clinical data from ADNI participants. The dataset comprises 212 ³³⁰ CN, 317 MCI, and 97 AD samples. We applied a train/test/validation split of $\frac{331}{331}$ 56-30-14%. We used target-based stratification during the test-train split followed by ³³² Synthetic Minority Over-sampling Technique (SMOTE) to address the imbalance in the $\frac{333}{100}$ datasets. Min-max scaling was performed on the training data and transferred to the ³³⁴ validation and test datasets. The target was one-hot encoded prior to training. $\frac{335}{335}$

Along with kernel regularization and dropout, early stopping callbacks on validation $\frac{336}{2}$ loss were used to prevent overfitting. We used the default batch size of 32 and set the $\frac{337}{20}$ maximum number of epochs at 120. The output is converted to respective CN, MCI, $_{338}$ and AD probabilities by softmax, with the higher probability used for the classification ³³⁹ of disease status. A representation of the model architecture is provided in Figure [4.](#page-11-0) ³⁴⁰

It is made available under a CC-BY-NC-ND 4.0 International license.

$\bf{Model~performance~evaluation}$ $\begin{array}{ccc} \textbf{341} & \textbf{342} \\ \textbf{341} & \textbf{343} \end{array}$

We evaluated the performance of our model on the validation and test datasets. We $_{342}$ used the area under the receiver operating characteristic (AUC) curve, accuracy, $_{343}$ precision, recall, and the F1 score as performance metrics, and their formulae are listed ³⁴⁴ below. We defined true positives (TP) , true negatives (TN) , false positives (FP) , and $\overline{}$ false negatives (FN) for each predicted class (CN, MCI, and AD). For instance, for the ³⁴⁶ AD class, TP is the number of AD samples predicted correctly. TN is the number of $_{347}$ non-AD samples predicted as MCI or CN. FP is the number of MCI and CN samples $_{348}$ predicted as AD. FN is the number of AD samples predicted as MCI or CN. $_{349}$

$$
Accuracy = \frac{TP + TN}{TP + TN + FP + FN}
$$
 (1)

$$
Precision = \frac{TN}{TN + FP}
$$
\n(2)

$$
Recall = \frac{TP}{TP + FN}
$$
³⁵¹

$$
F1\ score = 2 \times \frac{Precision \times Recall}{Precision + Recall}
$$
\n⁽⁴⁾

Model interpretation and identification of potential biomarkers $\frac{353}{2}$

Model interpretation is essential to gain user trust and overcome the 'black box' 354 reputation of deep learning models. Lundberg and Lee [\[27\]](#page-16-4) proposed SHAP values as a $\frac{355}{2}$ unified measure of feature importance, computed using game theory. To calculate $\frac{356}{2}$ SHAP values, each individual feature's contribution to the predicted value is estimated $\frac{357}{252}$ by comparing predictions over different combinations of features. The SHAP value for a $\frac{358}{2}$ feature is the average of all the marginal contributions to predictions from all possible ³⁵⁹ feature combinations. To evaluate the importance of specific genes and clinical data, we ³⁶⁰ computed SHAP values on all features using the shap package $v0.41.0\%$.

$\rm{Interaction}$ network analysis $_{362}$

In order to gain mechanistic insights and validate the reliability of our model, we $\frac{363}{100}$ thoroughly investigated the interaction network among genes that were prioritized by ³⁶⁴ SHAP. Specifically, we extracted the SHAP-prioritized genes from the top 20 features for each group (CN,MCI, and AD). To explore the functional associations between these $\frac{366}{2}$ genes, we employed STRING, a resource that leverages diverse types of evidence, ³⁶⁷ including experimental data, to identify such connections. By examining the interaction ³⁶⁸ network within STRING [\[51\]](#page-18-3), we aimed to elucidate the intricate relationships and ³⁶⁹ potential collaborative roles among these genes. Moreover, we also conducted an $\frac{370}{20}$ analysis to identify enriched pathways for the selected genes. This allowed us to gain $\frac{371}{20}$ further insights into the biological processes and molecular mechanisms underlying the $\frac{372}{20}$ observed gene interactions. By comprehensively studying the gene interaction network 373 and identifying enriched pathways, we aimed to reinforce the validity and biological $\frac{374}{2}$ relevance of our model's predictions. 375

${\bf Intermediate\ layer\ activation} \hspace{2cm} \genfrac{}{}{}{0pt}{}{\text{376}}{376}$

To investigate and compare the activation values of intermediate layers in our model, we $\frac{377}{20}$ randomly selected inputs from each prediction class, namely cognitively normal (CN) , $\frac{378}{276}$ mild cognitive impairment (MCI), and Alzheimer's disease (AD). In this context, $\frac{379}{2}$ activation refers to the signed outcome of a node based on its inputs. To determine the ³⁸⁰

$$
13/21
$$

It is made available under a CC-BY-NC-ND 4.0 International license.

significance of differences in activation values, we conducted the Kruskal-Wallis $_{381}$ statistical test. This analysis allowed us to assess the variations in activations across the ³⁸² different prediction classes in a rigorous and quantitative manner.

Statistical analysis 384 and 32 and 334 and 334

Significant distinctions in clinical features among cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) subjects were examined 386 through rigorous statistical analyses. The age of onset and years of education were $\frac{387}{2}$ subjected to an analysis of variance (ANOVA) test to assess their significance. Similarly, ₃₈₈ the proportion of male and female participants, as well as the presence of the APOE ϵ 4 389 allele, were evaluated using the Chi-square contingency test. For the remaining clinical ³⁹⁰ variables, the non-parametric Kruskal-Wallis test was employed. It is important to note that all statistical analyses were conducted with a significance level of 95 392

Acknowledgments 393

Data used in the preparation of this article were obtained from the Alzheimer's Disease $\frac{394}{2}$ Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators ³⁹⁵ within the ADNI contributed to the design and implementation of ADNI and/or $\frac{396}{2}$ provided data but did not participate in the analysis or writing of this report. A $\frac{397}{200}$ [c](http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf)omplete listing of ADNI investigators can be found at [http://adni.loni.usc.edu/wp](http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf) [content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.](http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf) Reactome data were downloaded from the repository provided by Elmarakeby et al. (2021): [https://zenodo.org/record/5163213#.Y7wZgNVBxPY.](https://zenodo.org/record/5163213#.Y7wZgNVBxPY)

Δ uthor contributions statement 402

SJ: Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, ⁴⁰³ Writing – original draft preparation, Writing – Review and editing. AS: 404 Conceptualization, Data curation, Funding acquisition, Software, Project 405 administration, Supervision, Validation, Writing – Review and Editing. FA edited and ⁴⁰⁶ reviewed the second manuscript. All authors reviewed the manuscript. 407

$\text{Data availability statement}$ $\qquad \qquad \text{408}$

The constrained model is made available on G itHub at 409 [https://github.com/Sherlyn-J/KU-BMED2/.](https://github.com/Sherlyn-J/KU-BMED2/) The dataset analysed in this study is $\frac{410}{400}$ publicly available in the Alzheimer's Disease Neuroimaging Initiative (ADNI) repository ⁴¹¹ [https://adni.loni.usc.edu/.](https://adni.loni.usc.edu/) (Accession Number:sa000002).

Additional information

Competing interests $\frac{414}{414}$

The authors declare that they have no competing interests.

Funding statement $\frac{416}{416}$

This work is supported by Khalifa University under Award no. FSU-2021-005. Data ⁴¹⁷ collection and sharing for this project was funded by the Alzheimer's Disease ⁴¹⁸

It is made available under a CC-BY-NC-ND 4.0 International license.

Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) ⁴¹⁹ and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is 420 funded by the National Institute on Aging, the National Institute of Biomedical $\frac{421}{421}$ Imaging and Bioengineering, and through generous contributions from the following: ⁴²² AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon ⁴²³ Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; ⁴²⁴ Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. ⁴²⁵ Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE $_{426}$ Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, ⁴²⁷ LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; ⁴²⁸ Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; $\frac{429}{429}$ Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal ⁴³⁰ Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The ⁴³¹ Canadian Institutes of Health Research is providing funds to support ADNI clinical ⁴³² sites in Canada. Private sector contributions are facilitated by the Foundation for the $\frac{433}{433}$ National Institutes of Health [\(https://www.fnih.org\)](https://www.fnih.org). The grantee organization is the ⁴³⁴ Northern California Institute for Research and Education, and the study is coordinated $\frac{435}{435}$ by the Alzheimer's Therapeutic Research Institute at the University of Southern ⁴³⁶ California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the ⁴³⁷ University of Southern California. $\frac{438}{438}$

References

- 1. Gauthier, S., Rosa-Neto, P., Morais, J. & Webster, C. World Alzheimer Report 2021: Journey Through the Diagnosis of Dementia. (Alzheimer's Disease International, 2021).
- 2. Chintamaneni, M. & Bhaskar, M. Biomarkers in Alzheimer's disease: a review. ISRN Pharmacol. 2012, 984786, DOI:<https://doi.org/10.5402/2012/984786> (2012).
- 3. Reitz, C. Genetic diagnosis and prognosis of Alzheimer's disease: challenges and opportunities. Expert Rev. Mol. Diagn. 15, 339–348, DOI: <https://doi.org/10.1586/14737159.2015.1002469> (2015).
- 4. Ogomori, K. et al. Beta-protein amyloid is widely distributed in the central nervous system of patients with Alzheimer's disease. Am. J. Pathol. 134, 243–251 (1989).
- 5. Fukutani, Y. et al. Neuronal loss and neurofibrillary degeneration in the hippocampal cortex in late-onset sporadic Alzheimer's disease. Psychiatry Clin. Neurosci. 54, 523–529, DOI:<https://doi.org/10.1046/j.1440-1819.2000.00747.x> $(2000).$
- 6. Roussarie, J.-P. et al. Selective neuronal vulnerability in Alzheimer's disease: A network-based analysis. Neuron 107, 821–835.e12, DOI: <https://doi.org/10.1016/j.neuron.2020.06.010> (2020).
- 7. Arriagada, P., Growdon, J., Hedley-Whyte, E. & Hyman, B. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42, 631–639, DOI:<https://doi.org/10.1212/wnl.42.3.631> (1992).
- 8. Jack, C. R., Jr et al. NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimers. Dement. 14, 535–562, DOI: <https://doi.org/10.1016/j.jalz.2018.02.018> (2018).

- 9. Padala, S. P. & Newhouse, P. A. Blood-based biomarkers in Alzheimer's disease: a mini-review. Metab. Brain Dis. 38, 185–193, DOI: <https://doi.org/10.1007/s11011-022-01114-1> (2023).
- 10. Ovod, V. et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers. Dement. 13, 841–849, DOI:<https://doi.org/10.1016/j.jalz.2017.06.2266> (2017).
- 11. Nakamura, A. et al. High performance plasma amyloid- β biomarkers for Alzheimer's disease. Nature 554, 249–254, DOI: <https://doi.org/10.1038/nature25456> (2018).
- 12. Zetterberg, H. & Burnham, S. C. Blood-based molecular biomarkers for Alzheimer's disease. Mol. Brain 12, 26, DOI: <https://doi.org/10.1186/s13041-019-0448-1> (2019).
- 13. Teunissen, C. E. et al. Blood-based biomarkers for Alzheimer's disease: towards clinical implementation. Lancet Neurol. 21, 66–77, DOI: [https://doi.org/10.1016/S1474-4422\(21\)00361-6](https://doi.org/10.1016/S1474-4422(21)00361-6) (2022).
- 14. Blennow, K. & Zetterberg, H. Biomarkers for Alzheimer's disease: current status and prospects for the future. J. Intern. Med. 284, 643–663, DOI: <https://doi.org/10.1111/joim.12816> (2018).
- 15. Lashley, T. et al. Molecular biomarkers of Alzheimer's disease: progress and prospects. Dis. Model. Mech. 11, dmm031781, DOI: <https://doi.org/10.1242/dmm.031781> (2018).
- 16. Bhagavati, S. Commentary: Diagnostic accuracy of blood-based biomarker panels: A systematic review. Front. Aging Neurosci. 14, 895398, DOI: <https://doi.org/10.3389/fnagi.2022.895398> (2022).
- 17. Eke, C. S. et al. Early detection of Alzheimer's disease with blood plasma proteins using support vector machines. IEEE J. Biomed. Health Inform. 25, 218–226, DOI:<https://doi.org/10.1109/JBHI.2020.2984355> (2021).
- 18. Salech, F. et al. Senescence markers in peripheral blood mononuclear cells in amnestic mild cognitive impairment and Alzheimer's disease. Int. J. Mol. Sci. 23, 9387, DOI:<https://doi.org/10.3390/ijms23169387> (2022).
- 19. Zettergren, A. et al. Association between polygenic risk score of Alzheimer's disease and plasma phosphorylated tau in individuals from the Alzheimer's disease neuroimaging initiative. Alzheimers. Res. Ther. 13, 17, DOI: <https://doi.org/10.1186/s13195-020-00754-8> (2021).
- 20. Stevenson-Hoare, J. et al. Plasma biomarkers and genetics in the diagnosis and prediction of Alzheimer's disease. Brain 146, 690–699, DOI: <https://doi.org/10.1093/brain/awac128> (2023).
- 21. Reddy, J. S. et al. Transcript levels in plasma contribute substantial predictive value as potential Alzheimer's disease biomarkers in african americans. EBioMedicine 78, 103929, DOI:<https://doi.org/10.1016/j.ebiom.2022.103929> (2022).
- 22. Ji, W., An, K., Wang, C. & Wang, S. Bioinformatics analysis of diagnostic biomarkers for Alzheimer's disease in peripheral blood based on sex differences and support vector machine algorithm. Hereditas 159, 38, DOI: <https://doi.org/10.1186/s41065-022-00252-x> (2022).

- 23. Stamate, D. et al. A metabolite-based machine learning approach to diagnose alzheimer-type dementia in blood: Results from the european medical information framework for alzheimer disease biomarker discovery cohort. Alzheimers Dement. (N. Y.) 5, 933–938, DOI:<https://doi.org/10.1016/j.trci.2019.11.001> (2019).
- 24. Morgan, A. R. et al. Inflammatory biomarkers in Alzheimer's disease plasma. Alzheimers. Dement. 15, 776–787, DOI: <https://doi.org/10.1016/j.jalz.2019.03.007> (2019).
- 25. O'Bryant, S. E. et al. A blood-based algorithm for the detection of Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 32, 55–62, DOI: <https://doi.org/10.1159/000330750> (2011).
- 26. Qiu, S. et al. Development and validation of an interpretable deep learning framework for Alzheimer's disease classification. Brain 143, 1920–1933, DOI: <https://doi.org/10.1093/brain/awaa137> (2020).
- 27. Lundberg, S. & Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17, 4768–4777 (Curran Associates Inc., Red Hook, NY, 2017).
- 28. Yang, C. C. Explainable artificial intelligence for predictive modeling in healthcare. J. Healthc. Inform. Res. 6, 228-239, DOI: <https://doi.org/10.1007/s41666-022-00114-1> (2022).
- 29. Saykin, A. J. et al. Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimers. Dement. 11, 792–814, DOI:<https://doi.org/10.1016/j.jalz.2015.05.009> (2015).
- 30. Venugopalan, J., Tong, L., Hassanzadeh, H. R. & Wang, M. D. Multimodal deep learning models for early detection of Alzheimer's disease stage. Sci. Rep. 11, 3254, DOI:<https://doi.org/10.1038/s41598-020-74399-w> (2021).
- 31. Zhou, T., Thung, K.-H., Zhu, X. & Shen, D. Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis. Hum. Brain Mapp. 40, 1001–1016, DOI: <https://doi.org/10.1002/hbm.24428> (2019).
- 32. Aghili, M., Tabarestani, S. & Adjouadi, M. Addressing the missing data challenge in multi-modal datasets for the diagnosis of Alzheimer's disease. J. Neurosci. Methods 375, 109582, DOI:<https://doi.org/10.1016/j.jneumeth.2022.109582> (2022).
- 33. Avrutsky, M. I. & Troy, C. M. Caspase-9: A multimodal therapeutic target with diverse cellular expression in human disease. Front. Pharmacol. 12, 701301, DOI: <https://doi.org/10.3389/fphar.2021.701301> (2021).
- 34. Rohn, T. T. et al. Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain. Neurobiol. Dis. 11, 341–354, DOI: <https://doi.org/10.1006/nbdi.2002.0549> (2002).
- 35. Zhao, S., Zhao, J., Zhang, T. & Guo, C. Increased apoptosis in the platelets of patients with Alzheimer's disease and amnestic mild cognitive impairment. Clin. Neurol. Neurosurg. 143, 46–50, DOI: <https://doi.org/10.1016/j.clineuro.2016.02.015> (2016).

- 36. Blacker, D. et al. Results of a high-resolution genome screen of 437 Alzheimer's disease families. Hum. Mol. Genet. 12, 23–32, DOI: <https://doi.org/10.1093/hmg/ddg007> (2003).
- 37. Zhong, W. et al. Lymphocyte-specific protein tyrosine kinase is a novel risk gene for alzheimer disease. J. Neurol. Sci. 238, 53–57, DOI: <https://doi.org/10.1016/j.jns.2005.06.017> (2005).
- 38. Kim, E.-J. et al. Alzheimer's disease risk factor lymphocyte-specific protein tyrosine kinase regulates long-term synaptic strengthening, spatial learning and memory. *Cell. Mol. Life Sci.* **70**, 743–759, DOI: <https://doi.org/10.1007/s00018-012-1168-1> (2013).
- 39. Hudák, A., Letoha, A., Vizler, C. & Letoha, T. Syndecan-3 as a novel biomarker in Alzheimer's disease. Int. J. Mol. Sci. 23, DOI: <https://doi.org/10.3390/ijms23063407> (2022).
- 40. Zeng, K. et al. Defective mitophagy and the etiopathogenesis of Alzheimer's disease. Transl. Neurodegener. 11, 32, DOI: <https://doi.org/10.1186/s40035-022-00305-1> (2022).
- 41. Castellazzi, M. et al. Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer's disease and mild cognitive impairment. Sci. Rep. 9, 20009, DOI:<https://doi.org/10.1038/s41598-019-56614-5> (2019).
- 42. Moradi, E., Hallikainen, I., Hänninen, T., Tohka, J. & Alzheimer's Disease Neuroimaging Initiative. Rey's auditory verbal learning test scores can be predicted from whole brain MRI in Alzheimer's disease. NeuroImage Clin. 13, 415–427, DOI:<https://doi.org/10.1016/j.nicl.2016.12.011> (2017).
- 43. Phongpreecha, T. et al. Single-cell peripheral immunoprofiling of Alzheimer's and Parkinson's diseases. Sci. Adv. 6, eabd5575, DOI: <https://doi.org/10.1126/sciadv.abd5575> (2020).
- 44. Josephy-Hernandez, S. et al. Pharmacological interrogation of TrkA-mediated mechanisms in hippocampal-dependent memory consolidation. PLoS One 14, e0218036, DOI:<https://doi.org/10.1371/journal.pone.0218036> (2019).
- 45. Garfias, S. et al. Peripheral blood lymphocyte phenotypes in alzheimer and Parkinson's diseases. Neurol. (Engl. Ed.) 37, 110–121, DOI: <https://doi.org/10.1016/j.nrleng.2018.10.022> (2022).
- 46. Lovestone, S. et al. AddNeuroMed–the european collaboration for the discovery of novel biomarkers for Alzheimer's disease. Ann. N. Y. Acad. Sci. 1180, 36–46, DOI:<https://doi.org/10.1111/j.1749-6632.2009.05064.x> (2009).
- 47. Sood, S. et al. A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status. Genome Biol. 16, 185, DOI: <https://doi.org/10.1186/s13059-015-0750-x> (2015).
- 48. Petersen, R. C. et al. Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74, 201–209, DOI: <https://doi.org/10.1212/WNL.0b013e3181cb3e25> (2010).
- 49. Sidiropoulos, K. et al. Reactome enhanced pathway visualization. Bioinformatics 33, 3461–3467, DOI:<https://doi.org/10.1093/bioinformatics/btx441> (2017).

- 50. Elmarakeby, H. A. et al. Biologically informed deep neural network for prostate cancer discovery. Nature 598, 348–352, DOI: <https://doi.org/10.1038/s41586-021-03922-4> (2021).
- 51. Szklarczyk, D. et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612, DOI: <https://doi.org/10.1093/nar/gkaa1074> (2021).
- 52. van der Haar, D. et al. An Alzheimer's disease category progression sub-grouping analysis using manifold learning on ADNI. Scientific Reports 13, 10483, DOI: <https://doi.org/10.1038/s41598-023-37569-0> (2023).
- 53. Shishegar, R. et al. Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI. Scientific Reports 11, 23788, DOI: <https://doi.org/10.1038/s41598-021-02827-6> (2021).

medRxiv preprint doi: [https://doi.org/10.1101/2024.11.19.24317595;](https://doi.org/10.1101/2024.11.19.24317595) this version posted November 20, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has grante

Table 2. ADNI neuropsychological test clinical data summary showing average values with standard deviation. Statistical significance (95% significance level) was tested using analysis of Kruskal-Wallis test for all Neuropsychological test and other variables.

	CN	MCI	$\overline{\bf AD}$	P-value				
Neuropsychological tests								
Clinical Dementia Rating - Sum	0.069 ± 0.296	1.427 ± 1.016	6.069 ± 2.789	< 0.001				
of Boxes (CDRSB)								
Mini-Mental State Examination (MMSE)	29.057±1.244	28.054 ± 1.700	20.915±4.609	< 0.001				
Logical Memory Delayed Recall To-	14.110 ± 3.464	7.933 ± 3.681	1.624 ± 2.734	$\sqrt{0.001}$				
tal Number of Story Units Recalled								
(LDELTOTAL)								
Trail making test score (TRAB-	82.178±37.885	107.058±57.909	193.654±82.489	$<\!\!0.001$				
SCOR)								
Functional Activities Question-	0.239 ± 1.065	2.644 ± 3.885	17.24±27.269	$\sqrt{0.001}$				
naire (FAQ)								
Montreal Cognitive Assessment	25.457 ± 2.452	23.413 ± 3.155	16.35 ± 25.257	$\sqrt{0.001}$				
(MOCA)								
Modified Preclinical Alzheimer Cognitive Composite (mPACC)								
mPACCdigit	0.118 ± 2.936	-4.858 ± 4.221	-19.020 ± 7.324	< 0.001				
mPACC trailsB	0.049 ± 2.660	-4.231 ± 3.783	-17.068 ± 7.076	$\overline{<}0.001$				
Alzheimer's disease assessment scores (ADAS)								
ADAS11	5.818 ± 2.836	8.984 ± 4.442	22.160±9.332	$\sqrt{0.001}$				
ADAS13	9.327 ± 2.938	14.348±4.706	32.904±8.695	< 0.001				
ADASQ4	2.938 ± 1.669	$4.\overline{706 \pm 2.488}$	8.695 ± 1.751	$<\!\!0.001$				
Rey's Auditory Verbal Learning Test (RAVLT								
Immediate recall	45.340 ± 10.550	37.109±10.879	20.844 ± 8.533	$\sqrt{0.001}$				
Learning	5.718 ± 2.323	4.826 ± 2.598	1.744 ± 1.827	$<\!\!0.001$				
Forgetting	3.995 ± 2.848	4.553 ± 2.552	4.122 ± 2.634	0.01356				
Percent forgetting	37.456±27.337	53.836 ± 30.898	87.352 ± 56.219	< 0.001				
Everyday Cognition scores (Ecog) -	Patient self-reported							
Memory	1.540 ± 0.440	2.230 ± 0.675	2.433 ± 0.824	< 0.001				
Language	1.379 ± 0.382	1.835 ± 0.590	1.831 ± 0.757	< 0.001				
Visual, Spatial and Perceptual	1.133 ± 0.230	1.393 ± 0.518	1.675 ± 0.725	$\overline{<}0.001$				
Abilities								
Executive Functioning - Planning	1.137 ± 0.246	1.471 ± 0.549	1.693 ± 0.754	< 0.001				
Executive Functioning - Organiza-	1.289 ± 0.399	1.625 ± 0.678	1.838 ± 0.852	$\sqrt{0.001}$				
tion								
Executive Functioning $-\overline{Divided}$	1.454 ± 0.510	1.927 ± 0.769	1.913 ± 0.814	< 0.001				
attention								
Total	1.330 ± 0.297	1.769 ± 0.517	1.919 ± 0.680	< 0.001				
Everyday Cognition scores - Study partner report								
Memory	1.274 ± 0.350	$2.138 + 0.797$	3.505 ± 0.510	< 0.001				
Language	1.128 ± 0.218	1.681 ± 0.680	2.697 ± 0.792	< 0.001				
Visual, Spatial and Perceptual	1.073 ± 0.189	1.425 ± 0.574	2.678 ± 0.841	< 0.001				
Abilities								
Executive Functioning - Planning	1.096 ± 0.232	1.570 ± 0.667	2.968 ± 0.837	$\sqrt{0.001}$				
Executive Functioning - Organiza-	1.142 ± 0.357	1.673 ± 0.778	3.149 ± 0.790	< 0.001				
tion								
Executive Functioning - Divided	1.220 ± 0.387	1.928 ± 0.820	3.183 ± 0.851	< 0.001				
attention								
Total	1.156 ± 0.222	1.743 ± 0.607	3.020 ± 0.630	$<\!\!0.001$				

medRxiv preprint doi: [https://doi.org/10.1101/2024.11.19.24317595;](https://doi.org/10.1101/2024.11.19.24317595) this version posted November 20, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has grante

Table 4. ADNI genotyping data summary. ADNI-GO: Alzheimer's Disease Neuroimaging Initiative Grand Opportunity

Phase	Platform	Variants	Participants	Genome assembly	DbSNP build
ADNI1	Illumina Hu-	SNP 620901	757	hg18	129
	man 610-Quad	and CNV mark-			
	BeadChip	ers			
ADNIGO/ADNI2	Illumina Hu-	SNP 730525	793	hg18	129
	$OmniEx-$ man	and CNV mark-			
	press BeadChip	ers			
ADNI3	Illumina Omni	SNP 759993	327	hg38	155
	(WGS 2.5M	and CNV mark-			
	Platform)	ers			