Abstract
Automating the screening, diagnosis, and monitoring of sleep apnea (SA) is potentially clinically useful. We present machine-learning models which detect SA and hypopnea events from the overnight electroencephalogram (EEG) and electromyogram (EMG), and we explain detection mechanisms. We tested four models using a novel data set comprising six-channel EEG and two-channel EMG recorded from 26 consecutive patients; recordings were expertly labeled with sleep stage and apnea/hypopnea events. For Model 1, EEG subband power and sample entropy were features used to train and test a random forest classifier. Model 2 was identical to Model 1, but we used EMG, not EEG. Model 3 was a simple decision strategy contingent upon sleep stage label. Model 4 was identical to Model 1, but we used EEG subband power, sample entropy, and sleep stage label. All models performed above chance (Matthews correlation coefficient, MCC > 0): Model 4 (leave-one-patient-out cross-validated MCC = 0.314) outperformed Model 3 (0.230) which outperformed Models 2 and 1 (0.147 and 0.154, respectively). Results indicate that sleep stage label alone is sufficient to detect apnea/hypopnea events. Either EMG or EEG subband power and sample entropy can be used to detect apnea/hypopnea events, but these EEG features likely reflect contamination by EMG. Indeed, EMG power was modulated by apnea/hypopnea event beginning and end, and similar modulation appeared in EEG power. Machine-learning approaches to the detection of apnea/hypopnea events using overnight EEG must be explainable; they must account for EMG contamination and sleep stage.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Auckland Health Research Ethics Committee waived the requirement for any further approval to use these datasets in this study.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
* We thank Ilan Dinstein and Lachlan Barnes for comments on the draft manuscript.
Data Availability
Data produced in the present study are available upon reasonable request to corresponding author.