PT - JOURNAL ARTICLE AU - Zhang, Danny H. AU - Zhou, Jeffrey AU - Wickens, Joseph D. AU - Veale, Andrew G. AU - Hallum, Luke E. TI - Apnea and hypopnea event detection using EEG, EMG, and sleep stage labels in a cohort of patients with suspected sleep apnea* AID - 10.1101/2024.10.24.24316077 DP - 2024 Jan 01 TA - medRxiv PG - 2024.10.24.24316077 4099 - http://medrxiv.org/content/early/2024/10/25/2024.10.24.24316077.short 4100 - http://medrxiv.org/content/early/2024/10/25/2024.10.24.24316077.full AB - Automating the screening, diagnosis, and monitoring of sleep apnea (SA) is potentially clinically useful. We present machine-learning models which detect SA and hypopnea events from the overnight electroencephalogram (EEG) and electromyogram (EMG), and we explain detection mechanisms. We tested four models using a novel data set comprising six-channel EEG and two-channel EMG recorded from 26 consecutive patients; recordings were expertly labeled with sleep stage and apnea/hypopnea events. For Model 1, EEG subband power and sample entropy were features used to train and test a random forest classifier. Model 2 was identical to Model 1, but we used EMG, not EEG. Model 3 was a simple decision strategy contingent upon sleep stage label. Model 4 was identical to Model 1, but we used EEG subband power, sample entropy, and sleep stage label. All models performed above chance (Matthews correlation coefficient, MCC > 0): Model 4 (leave-one-patient-out cross-validated MCC = 0.314) outperformed Model 3 (0.230) which outperformed Models 2 and 1 (0.147 and 0.154, respectively). Results indicate that sleep stage label alone is sufficient to detect apnea/hypopnea events. Either EMG or EEG subband power and sample entropy can be used to detect apnea/hypopnea events, but these EEG features likely reflect contamination by EMG. Indeed, EMG power was modulated by apnea/hypopnea event beginning and end, and similar modulation appeared in EEG power. Machine-learning approaches to the detection of apnea/hypopnea events using overnight EEG must be explainable; they must account for EMG contamination and sleep stage.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any fundingAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The Auckland Health Research Ethics Committee waived the requirement for any further approval to use these datasets in this study.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesData produced in the present study are available upon reasonable request to corresponding author.