Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease marked by motor deterioration and cognitive decline. Early diagnosis is challenging due to the complexity of sporadic ALS and the lack of a defined risk population. In this study, we developed Miniset-DenseSENet, a convolutional neural network combining DenseNet121 with a Squeeze-and-Excitation attention mechanism, using 190 autopsy brain images from the Gregory Laboratory at the University of Aberdeen. The model distinguishes ALS patients from controls with 97.37% accuracy and detects cognitive impairments, a critical but underdiagnosed feature of ALS. Miniset-DenseSENet outperformed other transfer learning models, achieving a sensitivity of 1 and specificity of 0.95. These findings suggest that integrating transfer learning and attention mechanisms into neuroimaging can enhance diagnostic accuracy, enabling earlier ALS detection and improving patient stratification. This model has the potential to guide clinical decisions and support personalized therapeutic strategies.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All post-mortem tissue was collected with ethics approval from East of Scotland Research Ethics Service (16/ES/0084) in line with the Human Tissue (Scotland) Act (2006). Use of post-mortem tissue for studies was reviewed and approved by the Edinburgh Brain Bank ethics committee and the Academic and Clinical Central Office for Research and Development (ACCORD) medical research ethics committee (AMREC). Clinical data were collected as part of the Scottish Motor Neurone Disease Register (SMNDR) and Care Audit Research and Evaluation for Motor Neurone Disease (CARE-MND) platform, with ethics approval from Scotland A Research Ethics Committee (10/MRE00/78 and 15/SS/0216) and have been published previously (CITE GREGORY ET AL 2019)
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.