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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease marked by motor
deterioration and cognitive decline. Early diagnosis is challenging due to the complex-
ity of sporadic ALS and the lack of a defined risk population. In this study, we devel-
oped Miniset-DenseSENet, a convolutional neural network combining DenseNet121
with a Squeeze-and-Excitation attention mechanism, using 190 autopsy brain images
from the Gregory Laboratory at the University of Aberdeen. The model distinguishes
ALS patients from controls with 97.37% accuracy and detects cognitive impairments,
a critical but underdiagnosed feature of ALS. Miniset-DenseSENet outperformed
other transfer learning models, achieving a sensitivity of 1 and specificity of 0.95.
These findings suggest that integrating transfer learning and attention mechanisms
into neuroimaging can enhance diagnostic accuracy, enabling earlier ALS detection
and improving patient stratification. This model has the potential to guide clinical
decisions and support personalized therapeutic strategies.

Keywords: Amyotrophic lateral sclerosis, TDP-43 protein, Cognitive impairment,
Transfer learning, Attention mechanisms

1 Main

Amyotrophic lateral sclerosis (ALS) is a condition that progressively degenerates the
neurons responsible for motor control [1]. As a patient’s motor neurons degenerate and
die, the patient’s brain loses the ability to initiate and control voluntary movement
and eventually dies from respiratory failure [2]. ALS has a median survival of only 2–4
years. The ALS Therapy Development Institute projects a global rise in ALS instances
from 222,801 in 2015 to 376,674 by 2040, marking a 69% surge [1]. Moreover, the
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average delay from the first appearance of symptoms to the final diagnosis is about
14 months [3].

In an analysis of autopsy cases from ALS patients, a specific protein called the
TAR DNA-binding protein 43 (TDP-43) was found to accumulate abnormally in the
cytoplasm [4]. This abnormal accumulation is observed in the motor neurons of nearly
all patients with sporadic ALS and in the majority of patients with familial ALS
(> 84%) [5]. The frequent presence of TDP-43 in almost all sALS patients and most
fALS patients suggests that it may play a key role in the ALS disease process [2].
Additionally, Gregory et al. found that although all ALS patients exhibit TDP-43
pathology in extramotor brain regions, only some present with cognitive impairment
[4]. The progression and ultimate outcome of ALS vary significantly between patients,
making it difficult to accurately predict the disease’s course [6, 7].

Deep learning models have achieved unexpected progress in classification and
recognition tasks [8], given their ability to recognize complex and subtle patterns and
relationships. However, capturing complex disease features in small datasets is chal-
lenging [9], [10]. Therefore, developing robust models that can effectively handle small
datasets and capture complex disease characteristics remains an important research
direction. Data augmentation and transfer learning are two widely adopted strategies
to alleviate the limitations of small datasets [11].

Data augmentation involves creating new training samples by applying various
transformations to the original data [12]. Data augmentation methods involve rotating
or reflecting the original image, scaling it up or down, and translating it to create new
images. Then, the model can become more robust to changes in image orientation and
position, ultimately enhancing its generalization ability [13].

Transfer learning is another effective method to address the issue of limited training
data. Using models pre-trained on large datasets such as ImageNet allows transfer
learning to transfer the learned features to a new, smaller dataset [14]. This process
involves fine-tuning the pre-trained model on a specific medical dataset, which can
improve the model’s initial performance and reduce the need for a large amount of
labeled data [15].

However, data augmentation and transfer learning alone may not fully address the
complexity of disease features in medical images. To further enhance model perfor-
mance, attention mechanisms to optimize feature extraction and highlight the most
relevant parts of the input data. Attention mechanisms can be intuitively explained
using the human visual system [16], and they have good integration properties with
many methods being very lightweight, such as the squeeze-and-excitation (SE) model
and the convolutional block attention module (CBAM) model. This makes them
well-suited for combination with deep learning [17]. Generally, attention mechanisms
determine which information is important by assigning weights. This process improves
model accuracy and provides better interpretability of the results. Specifically, the
SE module’s channel-level attention mechanism can better capture and utilize fine-
grained features within DenseNet, enhancing the model’s recognition and classification
performance.

In this study, we exploit the combination of transfer learning and attention mecha-
nism to develop an effective model framework named Miniset-DenseSENet. The model
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leverages the powerful feature extraction capabilities of pre-trained DenseNet121 and
combines SE modules to enhance feature representation. By focusing on the most
relevant features in the dataset, our approach aims to improve the diagnosis and
understanding of ALS.

2 Results

2.1 Original Image Quality Analysis

The inspection of the dataset shown in Figure 1 found that the mean distribution of
contrast and brightness is relatively concentrated, and there are no extreme outliers,
indicating that most images are relatively consistent in brightness and contrast. The
SNR distribution is narrow, which indicates that the images are relatively balanced
in signal quality without excessive noise. However, the distribution of the Laplacian
variance shows that there are varying degrees of image sharpness but no outliers. The
images with the minimum and maximum Laplacian variance are shown in Figure 1(1)
and Figure 1(2). It can be observed that most images are acceptable in terms of clarity.
These distribution plots indicate that the image quality of the dataset is appropriate
and can be used for further data enhancement and deep learning training. See A.1 for
further details.

2.2 Performance Evaluation over Different Models

We undertook a detailed training and evaluation of Miniset-DenseSENet
and four other distinct models: ResNet18, DenseNet121, ResNet18+SE, and
ResNet18+CBAM. Figure 2(top) shows the accuracy convergence as the number of
training iterations increases in all the models considered. Figure 2(middle) shows accu-
racy and MCC median values among the five runs. A comparative analysis of these
figures reveals that the accuracy of the five transfer learning models is significantly
better than that of the conventional CNN approach. Notably, the accuracy of the
DenseNet model augmented with the SE module consistently exceeds 90%, with an
optimal performance of 97.37%.

Further, we employed the MCC, sensitivity, and specificity metrics to con-
duct a performance evaluation of the models, as shown in Figure 2(middle, right),
Figure 2(bottom, left) and Figure 2(bottom, right). The results showed that the con-
trol group performed well in terms of sensitivity and specificity. Specifically, in five
experiments, the specificity of the control group for ResNet18, ResNet18+SE, and
ResNet18+CBAM models reached 1, and the sensitivity for ResNet18 and Miniset-
DenseSENet achieved a score of one in four out of five measurements. However, the
sensitivity and specificity performance for the Concordance and Discordance classes
did not meet the high standards observed in the control group and raised some sta-
bility concerns. Miniset-DenseSENet demonstrated the most superior results among
them. The average sensitivity for both classes was approximately 80%, and the speci-
ficity was around 93%. In the Appendix, Figure 7 displays the confusion matrices for
the six models, further validating these observations.
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Fig. 1: Top: Violin plots showing the distribution and density of four image features:
(a) Laplacian variance, (b) signal-to-noise ratio (SNR), (c) brightness mean, and (d)
contrast. These plots illustrate the variability and spread of these metrics across the
dataset. Bottom: Two ALS image samples representing the extremes of Laplacian
variance. Image 1 shows the minimum variance, while Image 2 shows the maximum
variance, highlighting the visual differences in image sharpness between the two sam-
ples. 4
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Fig. 2: The figure illustrates the performance comparison between different models,
arranged from top to bottom. At the top, the graph displays the accuracy values
collected over consecutive epochs for six models: Miniset-DenseSENet, ResNet18,
ResNet18+SE, ResNet18+CBAM, DenseNet121, and Basic CNN. The models are
listed in order of performance from best to worst accuracy convergence. In the middle
row, boxplots show the accuracy and Matthews correlation coefficient (MCC) over five
repetitions, where Miniset-DenseSENet demonstrates the highest accuracy and MCC,
followed by ResNet18. The final row presents sensitivity and specificity values for each
model, with results and variance aligning with the accuracy and MCC observations
from previous rows. These plots confirm the superior performance and consistency of
Miniset-DenseSENet compared to the other models.
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Table 1: Comparison of model parameters, FLOPs
and average accuracy

Models FLOPs Params AvgAccuracy
Basic CNN 1.9G 95232 63.16%
ResNet18 5.9G 11.2M 86.84%

DenseNet121 9.2G 7.0M 78.95%
ResNet18+SE 5.9G 11.2M 81.58%

ResNet18+CBAM 5.9G 11.22M 71.05%
Miniset-DenseSENet 9.2G 7.1M 89.47%

A comparative analysis of the six models, as observed in Table 1, shows higher
computational complexity, measured in FLOPs, is generally associated with increased
accuracy. However, this relationship is not linear, indicating that simply increasing
computing resources does not guarantee a proportional improvement in performance
[18]. The DenseNet architecture utilizing feature reuse exhibits higher parameter
efficiency compared to ResNet’s residual learning method. Integrating attention mech-
anisms such as SE and CBAM into the traditional architectures produces mixed
results. The specific reasons will be analyzed in the discussion. Miniset-DenseSENet
achieves the highest accuracy among the evaluated models, indicating a positive syn-
ergy between the DenseNet architecture and the SE mechanism. In contrast, the
accuracy of ResNet18+CBAM drops emphasizes that the effectiveness of the attention
mechanism depends on the underlying model architecture and the specific task.

2.3 Grad-CAM Analysis of Correct and Incorrect Cases

We use Grad-CAM to visualize the classification rationale of the Miniset-DenseSENet
trained model, exploring instances of both correct and incorrect classifications through
visualization, as shown in Figure 3. The principle of creating this diagram is similar to
that of confusion matrices. The horizontal axis represents the predicted categories of
the images, while the vertical axis represents the true categories. From the distribution
of the heatmap, it can be seen that the model correctly recognizes images along the
diagonal, while misclassifications are found at other positions.

3 Discussion and Analysis

In this project, our decision not to employ data augmentation methods, such as colour
denoising and enhancement or brightness adjustments, was motivated by the need
to preserve the integrity of critical biomarkers in postmortem brain images of ALS
patients. In neurodegenerative diseases, maintaining the fidelity of pathological sig-
nals is essential, especially when the underlying features of interest may be subtle
or obscured by extraneous enhancements. Excessive manipulation of image charac-
teristics can inadvertently introduce biases, causing models to focus on irrelevant or
non-specific areas, thus diverging from the true disease-related features that are key
to accurate diagnosis and mechanistic understanding. For ALS, where the presence of
TDP-43 proteinopathy is central to the disease, ensuring that machine learning models
identify and prioritise relevant features is essential.
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Fig. 3: Classification Performance Analysis with Miniset-DenseSENet: Correct and
Misclassified Instances. The figure presents a 3x3 matrix of class activation map
(CAM) images. The columns represent the predicted labels (control, concordant, dis-
cordant), and the rows represent the actual labels. Each cell in the matrix visualizes
the Grad-CAM output for a given instance, showing the areas of focus that con-
tributed to the model’s prediction. Diagonal cells indicate correct classifications, where
the predicted and actual labels match, while off-diagonal cells indicate misclassified
instances, showing where the model predicted incorrectly. This visualization highlights
how Miniset-DenseSENet identifies key features in different brain regions across the
control, concordant, and discordant categories.

The integration of advanced techniques such as transfer learning and attention
mechanisms has significantly improved model performance compared to traditional
CNN training methods (see Figure 2). Specifically, our results show that ResNet18
outperforms DenseNet121, which is noteworthy given that DenseNet models are often
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favoured for their deep, densely connected architectures. However, introducing the SE
module into our Miniset-DenseSENet architecture shifted this balance, enabling supe-
rior performance compared to both ResNet18 and ResNet18+SE. This observation is
particularly relevant in the context of machine learning applied to ALS, where data is
often limited. Models like ResNet18, with fewer parameters, are advantageous when
data availability is restricted, as they mitigate the risk of overfitting while still captur-
ing disease-relevant features. However, as demonstrated by the enhanced performance
of Miniset-DenseSENet, incorporating attention mechanisms through the SE module
can selectively amplify critical input features in dense layers, improving the model’s
capacity to generalise despite the small dataset.

The machine learning community’s ongoing work developing and refining models
such as these is crucial for advancing our understanding of ALS. The pathophysio-
logical mechanisms of ALS, particularly those involving TDP-43, are highly complex
and not fully understood. Machine learning offers a unique lens through which these
mechanisms can be explored, as models trained on large datasets can identify pat-
terns and associations that may be difficult to detect through conventional analytical
approaches. The integration of attention mechanisms, particularly, has shown promise
in emphasising subtle but meaningful features likely to be associated with pathological
changes.

However, it is important to recognise that the effectiveness of attention mecha-
nisms is contingent upon several factors, including the complexity of the model, the
nature of the dataset, and the optimisation strategy. In cases where simpler models like
ResNet18 can effectively capture relevant features, further complexity may be redun-
dant and detract from performance. This insight highlights the importance of tailoring
model architecture to the specific requirements of a given task, especially in scenarios
involving rare diseases like ALS, where data scarcity is often a limiting factor. The
superior performance of the DenseNet121+SE model compared to ResNet18+SE may
reflect the inherent compatibility of the DenseNet architecture with the SE module in
this application. DenseNet’s dense connections facilitate the propagation of informa-
tion across layers, which, when combined with the feature recalibration capability of
the SE module, enhances the model’s ability to focus on disease-relevant areas in a
more holistic manner.

This work underscores the critical role that the machine learning community plays
in advancing our understanding of ALS. Optimizing model architectures and inte-
grating innovative techniques such as attention mechanisms enhance our ability to
diagnose ALS and unravel the mechanisms underlying TDP-43 aggregation. These
contributions are valuable for improving clinical outcomes and deepening our biolog-
ical understanding of this devastating disease. As the field progresses, we anticipate
that further collaborations between machine learning researchers, neuroscientists, and
clinicians will drive significant advancements in diagnosing, monitoring, and treating
ALS.
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4 Methodology

4.1 Image Dataset

In this project, we apply deep learning techniques to classify a dataset of 190 images
provided by Gregory’s Lab at the University of Aberdeen. The dataset comprises
three categories: 60 images in the concordant group, which are images of patients
with TDP-43 pathology in the extramotor cortex and cognitive impairment; 60 images
in the discordant group, which are images of patients with TDP-43 pathology in
the extramotor cortex but without cognitive impairment. Finally, the control group
consists of 70 images from individuals without ALS, characterized by the absence of
TDP-43 pathology in the extramotor cortex (Figure 4).

The brain tissue images were created using immunohistochemistry techniques,
enabling precise staining and visualization of TDP-43 pathology in specific cortical
areas. This method allows for the detection of specific proteins within the brain tissue
samples, providing a detailed view of the presence and distribution of TDP-43 inclu-
sions [4]. The images were stained with TDP-43 RNA aptamer (TDP-43APT) [19, 20],
following the Standard Operating Procedure previously published [21].

The brain images were selected from two key brain regions: Brodmann area 44
(BA44) and Brodmann area 46 (BA46). BA44, located in the left inferior frontal gyrus
and part of Broca’s area, is primarily associated with language production and higher-
order cognitive functions [22]. BA46, situated in the dorsolateral prefrontal cortex,
is involved in executive functions such as working memory, cognitive control, and
decision-making [23]. These regions are of particular interest due to their involvement
in both cognitive processing and motor control. This focus on BA44 and BA46 helps
bridge the gap between cognitive decline and motor dysfunction, facilitating a deeper
understanding of the distinct patterns observed in concordant and discordant cases.

4.2 Ethics Statement

All post-mortem tissue was collected with ethics approval from the East of Scot-
land Research Ethics Service (16/ES/0084) in line with the Human Tissue (Scotland)
Act (2006). The use of post-mortem tissue for studies was reviewed and approved by
the Edinburgh Brain Bank ethics committee and the Academic and Clinical Central
Office for Research and Development (ACCORD) medical research ethics committee
(AMREC). Clinical data were collected as part of the Scottish Motor Neurone Disease
Register (SMNDR) and Care Audit Research and Evaluation for Motor Neurone Dis-
ease (CARE-MND) platform, with ethics approval from Scotland A Research Ethics
Committee (10/MRE00/78 and 15/SS/0216) and have been published previously [4]).

4.2.1 Dataset Division

The 190 image datasets are divided into training, validation, and test sets according
to a distribution ratio of 6:2:2, as shown in Table 2. The data were split using a strat-
ified sampling approach, ensuring that the category distribution of the original labels
was preserved across the training, validation, and test sets. This method maintained
class balance during the division process, which is crucial to avoid introducing bias
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Fig. 4: The figure provides a comprehensive overview of the dataset and its neu-
roanatomical focus. On the left, a brain diagram highlights the regions BA44 and
BA46, which are the areas from which the brain tissue samples were taken. In the
center, the top section features an icon representing the immunohistochemistry tech-
niques used to create the brain tissue images, while below it is a sample image from
the dataset. On the right, a bar chart shows the sample size distribution across three
classes: control, concordant, and discordant. Concordant samples represent individuals
showing signs of cognitive decline, while discordant samples display motor dysfunction
without cognitive impairment. Together, these visual elements emphasize the neu-
roanatomical regions, image acquisition techniques, and the distribution of data across
key categories in the study.

Table 2: Dataset extension and division for training and test-
ing.

Dataset Size Training Size Validation Size Test Size
Original 190 114 38 38

Augmented 1140 (9× 114) 1026 38 38

toward the majority class, leading to reduced generalization and poorer performance
on minority classes [24]. The training dataset was augmented using nine different data
augmentation techniques, resulting in a total of 1,140 images in the final training set.
Figure 4 (right) illustrates the categorical distribution within the training dataset.

4.3 Original Image Quality Analysis

Here, 190 images are quality-checked to ensure all training images are clear and valid.
At the same time, quality inspection of the data-enhanced images can ensure the
effectiveness of data enhancement. The testing of the Laplacian variance, brightness
average, contrast (expressed as standard deviation), signal-to-noise ratio (SNR) and
other indicators of each image allows us to analyze the quality of the dataset, following
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standard practices in image quality assessment [25]. In addition, we chose violin plots
to show the distribution and density of these indicators, which helps us understand
the fluctuations in image quality in the dataset more intuitively.

4.4 Data Augmentation

Training deep CNNs on small datasets and enhancing the generalization capabilities
of these models is an extremely challenging task. During training, models with poor
generalization tend to overfit the training data. Data augmentation is an effective
strategy to solve this problem. It minimizes overfitting problems by extending the data
representation to include a more comprehensive set of potential data points [12].

This project uses nine data augmentation methods, including geometric trans-
formation and various image processing functions. Geometric transformation mainly
changes the spatial layout of image content, while non-geometric transformation
involves adjusting the appearance of the image, such as color, brightness, contrast,
etc. The specific methods are as follows:

• Flipping: Flip the image horizontally.
• Rotating: Rotate the image 90 degrees.
• Image Cropping: Cut off a specified border width evenly from all sides of
each original image to obtain a smaller central area than the original image.

• Image Scaling: Adjust the size of the image.
• Perspective Transformation: Simulates the visual effects of observing an
image from different angles.

• Grayscale Conversion: Convert color images to grayscale images.
• Grayscale Image Denoising: Reduce random noise in grayscale images.
• Color Image Denoising: Reduce random noise in color images.
• Color Image Denoising: Reduce random noise in color images.
• Color Image Denoising and Enhancing Image Quality: Bilateral filtering is
used to reduce noise in color images, and a binary mask is created for edge
protection through the Canny edge detection [26] and expansion opera-
tions. Finally, an adaptive histogram equalization method is applied to the
luminance channel of the image to improve the contrast and sharpness of
the image.

• Add noise: Add random noise to the image to improve the robustness of
the model.

• Brightness Enhancement: Improve the overall brightness of the image.

Taking the original image in Figure 5 as an example, the extended images show
the resulting images processed by different data augmentation methods.

4.5 Model Architecture

We utilized DenseNet121, a convolutional neural network known for its dense connec-
tivity, which promotes feature reuse and mitigates the vanishing gradient problem. In
this architecture, each layer is directly connected to every other layer, allowing for
efficient feature transfer across layers. The output of the l-th layer, xl, is expressed as
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Fig. 5: The figure above displays the original image (top), followed by nine images
augmented using various techniques. The augmented images, arranged in a 3x3 matrix,
are as follows: (a) Flipping, where the image is mirrored horizontally; (b) Grayscale,
converting the image to grayscale; (c) GrayDenoised, applying noise reduction to the
grayscale image; (d) ColorDenoising, applying noise reduction while maintaining the
original color scheme; (e) Scaling, resizing the image without altering the aspect ratio;
(f) Cropping, selecting and displaying only a portion of the original image; (g) Adding
Noise, introducing random noise to the image; (h) Perspective Transformation, altering
the perspective view of the image; and (i) Rotating, rotating the image by a specified
angle. These augmentations highlight the variety of transformations applied to the
original data to enhance model robustness.
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a composite function Hl, composed of convolution, batch normalization, and ReLU
activation. The relationship is defined as:

xl = Hl([x0, x1, ..., xl−1])

This connectivity ensures feature reuse and leads to better model regularization,
which is particularly beneficial when training on smaller datasets, such as those in
ALS classification tasks. DenseNet121’s inherent regularization reduces the risk of
overfitting.

To enhance feature recalibration, we integrated the Squeeze-and-Excitation (SE)
module into the DenseNet121 architecture. The SE module performs adaptive
recalibration of channel-wise feature responses by explicitly modeling channel inter-
dependencies. This is done through a ”squeeze” operation, which aggregates spatial
information into a global channel descriptor via global average pooling, followed by an
”excitation” phase, which applies a Sigmoid-activated gating mechanism to selectively
emphasize important features.

The recalibration process is represented as:

zc =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j)

sc = σ(Wc · zc)
x̃c = sc · uc

Where uc is the feature map for channel c, zc is the global descriptor for that
channel, and sc represents the gating weights applied to recalibrate the channel’s
features.

4.5.1 Integration of DenseNet121 and Squeeze-and-Excitation
Module

We combined DenseNet121 with the SE module, positioning the SE blocks between the
dense blocks of DenseNet. This architecture, referred to as DenseNet121+SE, allows us
to use DenseNet’s feature extraction capabilities while using SE modules to refine the
features by suppressing irrelevant ones and enhancing critical ALS-related patterns.
The overall architecture is illustrated in Figure 6, which shows the placement of SE
blocks and the connection of dense blocks within the DenseNet121 backbone.

4.5.2 Training Details

The model was trained using the Adam optimizer with a learning rate of 1e−4 and
a batch size of 16 for 50 epochs. Data augmentation techniques, such as rotation,
flipping, and contrast adjustments, were applied to mitigate overfitting due to the
small dataset size. The training data was split 80/20 into training and testing sets,
ensuring balanced representation across ALS subtypes. We use DenseNet121 as our
transfer learning model because DenseNet has efficient feature reuse and improved
gradient flow.
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Fig. 6: (1) The SE block enhances network performance by adaptively recalibrating
channel-wise feature responses. It first uses global average pooling to ”squeeze” spatial
information into a channel descriptor, followed by an ”excitation” phase with fully con-
nected layers that generate weights for each channel. These weights are applied to the
original feature map to emphasize important features and suppress less relevant ones,
improving the model’s representational capacity with minimal computational cost. (2)
The model architecture of a basic CNN. (3) The model architecture of DenseNet121
and its model architecture after integrating the SE module.
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Table 3: The applied hyperparameters of different CNN models

CNNs

HPs

Learning rate Batch size Optimizer Epochs Weight decay

ResNet18 0.0001 64 Adam 150 0.008
DenseNet121 0.00008 32 Adam 250 0.08
ResNet18+SE 0.0005 128 Adam 300 0.0008
ResNet18+CBAM 0.0001 128 Adam 200 0.008
Miniset-DenseSENet 0.0001 32 Adam 200 0.001
3-layer CNN 0.0001 64 Adam 300 0.001

4.6 Model Benchmarking

In the model training phase of this study, Python 3.8 was selected as the programming
language to ensure efficient development and model implementation. The performance
of Miniset-DenseSENet was compared with that of four other models: ResNet18,
DenseNet121, ResNet18+SE, and ResNet18+CBAM, as well as with a simple three-
layer CNN baseline model (see Figure 6(2)). These models were developed based on the
foundational ResNet and DenseNet architectures, with specific enhancements through
integrating SE and CBAM attention mechanisms in designated variants.

The training dataset used in this experiment includes the original dataset and data
processed by nine different data augmentation techniques, with a total of 1140 images.
However, given the limited scale of the available training dataset, all CNN modules in
this study are pre-trained on ImageNet. When using these pre-trained models, most
of the layers are frozen, with only zero to two modules in a trainable state, while the
global average pooling layer and fully connected layer are set to trainable states for
fine-tuning specific tasks. Here are the training strategy and freezing details:

• ResNet18: All modules of the pre-trained ResNet18 model are frozen, and
only the GAP and FC are set as trainable layers.

• ResNet18+SE: All modules of the pre-trained ResNet18 model are frozen,
and the GAP, FC and SE modules are set as trainable layers.

• ResNet18+CBAM: Most modules of the pre-trained ResNet18 model are
frozen, and only the last two modules, the GAP, the FC and the CBAM
modules, are set as trainable layers.

• DenseNet121: All modules of the pre-trained DenseNet121 model are
frozen. The GAP and the FC are set as trainable layers.

• Miniset-DenseSENet: All modules of the pre-trained DenseNet121 model
are frozen, and the GAP, FC and SE modules are set as trainable layers.

The selection of hyperparameters for each model was informed by careful consid-
eration of various factors, including limitations imposed by GPU memory, training
efficiency, the risk of overfitting, and the inherent size of the models. Detailed
configurations of the hyperparameters are systematically presented in Table 3.

In this project, model performance was quantified by assessing a suite of metrics,
with each trained model subjected to five independent tests. The number of iterations
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(epochs) of model training was set between 150 and 300. Evaluative criteria included
the Matthews Correlation Coefficient (MCC) [27], accuracy, sensitivity, and specificity.
MCC is a performance indicator for classification problems based on the correlation
coefficient between the observed and predicted classifications. Its values range from
-1 to 1, where 0 represents a random guess, 1 a perfect prediction, and -1 represents
a completely inconsistent prediction. The formulas for these metrics are provided in
Appendix A.3. The computational complexity, parameter efficiency, and other indica-
tors of the models were also considered. Additionally, we performed a visual analysis
of the correct and incorrect results of model classification.

4.7 Visualization Techniques

CNN is usually regarded as a black box model. To improve its interpretability, this
study adopts the Grad-CAM technology [28]. The technique provides the model with
a ”visual explanation” of the decision by highlighting the areas of the image that CNN
focused on when making a specific decision.

This technique relies on the gradient information of the model to generate a
heatmap by analyzing the impact of specific categories on the output of the last
convolutional layer. This process can be simplified by the following formula:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(1)

Lc
Grad-CAM = ReLU

(∑
k

αc
kA

k

)
(2)

Where αc
k denotes the importance weights for each channel in the feature map

Ak with respect to class c. Lc
Grad-CAM is the class-discriminative localization map for

class c, which is a matrix of width u and height v. Before softmax transformation, yc

denotes the score of category c, and gradient ∂yc

∂Ak denotes the effect on the category

score yc by measuring the change in feature map activation Ak.
This heat map reveals which parts of the image the model values when identifying

or classifying a specific class, indicating which regions contribute most to the ultimate
decision. By applying Grad-CAM, researchers can visually see which part of the tissues
plays a decisive role in diagnostic decisions when the model analyzes postmortem brain
images of ALS patients and controls.

5 Conclusion and Future Work

In this study, we explored the performance of CNNs in the classification of ALS dis-
ease. We developed a model named Miniset-DenseSENet and evaluated its predictive
performance using 190 autopsy brain images provided by the University of Aberdeen.
Compared with standard classification models (such as ResNet18, DenseNet121,
ResNet18+SE, and ResNet18+CBAM) and the baseline model (CNN), the Miniset-
DenseSENet model significantly outperformed other models in classification accuracy
on the small dataset.
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Miniset-DenseSENet combines DenseNet121 with an SE module, leading to an
increase in classification accuracy and reducing the impact of redundant features. The
model’s accuracy consistently exceeds 90%, with the best performance being 97.37%.
The mean value of MCC is 0.84, and the optimal result is 0.96. The sensitivity of the
control category is as high as 1, and the specificity at the worst performance is as high
as 0.95. The main limitation of this model is its current computational complexity.
However, this limitation can be addressed through methods such as model pruning,
quantization, and knowledge distillation.

The development of the Miniset-DenseSENet model holds significant importance
for ALS disease. Accurate classification and early diagnosis of ALS can lead to better
patient management and treatment planning. With the use of advanced neural network
techniques, this model has the potential to assist medical professionals in identifying
ALS with high precision, thereby contributing to improved clinical outcomes and a
deeper understanding of the disease.

Considering that the proposed method is trained on a limited dataset, although
the model shows high accuracy, it still has deficiencies in terms of stability. To alleviate
the overfitting problem and enhance the stability of the model, it is recommended
that the size of the dataset be increased. Additionally, running the model multiple
times and then evaluating the results using statistical tests is suggested to determine
if the observed data indicate the presence of a true effect or if it may be a random
event. While the model could not accurately distinguish the location of protein density
in TDP-43 aggregates, the visualization images generated by Grad-CAM have been
analyzed in collaboration with our clinical team. Further refinements in visualization
techniques may be needed to improve the interpretability and diagnostic utility of the
model.
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A Additional Material

A.1 Image Quality Assessment

In this study, we evaluated the quality of the dataset using several key image quality
metrics to ensure that the data is suitable for further analysis and deep learning train-
ing. The following sections describe the metrics used, along with the corresponding
violin plots, which confirm that the images meet the required quality standards.

Laplacian Variance (Sharpness)

Laplacian variance is used to assess the sharpness of each image in the dataset. A
high Laplacian variance value indicates sharper images, while a lower value suggests
blurriness. Sharp images are crucial for identifying fine details in brain tissue samples,
which are essential for accurate feature extraction in deep learning models.

The violin plot for Laplacian variance demonstrates that the majority of images
have high sharpness, with only a few outliers in the lower range. This distribution
confirms that the dataset predominantly consists of clear and sharp images that are
suitable for analysis.

Brightness Average

Brightness average measures the overall intensity of each image, ensuring that the
images are neither too dark nor too bright. Proper brightness is important for
distinguishing between different regions and features in the images.

The brightness average violin plot shows that the images are well-distributed
around a moderate brightness level, indicating that most images have appropriate
lighting conditions. This ensures that brightness will not negatively affect the quality
of data processing.
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Contrast (Standard Deviation of Intensity)

Contrast, measured as the standard deviation of pixel intensity, reflects the difference
between light and dark areas in each image. Adequate contrast is necessary to highlight
important features and ensure that the images contain enough detail for deep learning
models to extract relevant information.

The violin plot for contrast indicates a concentrated distribution of moderate to
high contrast values, suggesting that the images exhibit sufficient variability between
light and dark regions. This level of contrast is optimal for deep learning tasks.

Signal-to-Noise Ratio

SNR assesses the level of useful information in the image relative to background
noise. High SNR values indicate clearer images with less noise, which is important for
accurate classification and model performance.

The SNR violin plot shows that most images have a high SNR, with only a few low-
SNR outliers. This confirms that the images are generally free from excessive noise,
making them appropriate for deep learning training.

Based on the analysis of these quality metrics (Laplacian variance, brightness
average, contrast, and SNR), the violin plots confirm that the dataset’s image qual-
ity is acceptable. The majority of images exhibit sharpness, appropriate brightness
and contrast, and low noise levels, ensuring that the dataset is valid for further data
enhancement and deep learning model training.

A.2 Confusion Matrices

The confusion matrices presented in this section illustrate the classification perfor-
mance of the models across different categories. These matrices offer insights into the
accuracy of predictions for each class by displaying true positives, true negatives, false
positives, and false negatives, which help in evaluating the model’s sensitivity and
specificity for each class.

A.3 Standard Formulas for Classification Metrics

In this section, we provide the standard formulas for the classification metrics used in
this study: accuracy, sensitivity, specificity, and MCC. These metrics are commonly
applied in the evaluation of binary classification models [30].

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3)

Accuracy represents the proportion of images correctly identified out of the overall
number of predictions made.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Specificity refers to the accuracy of a test in correctly recognizing individuals who
are not afflicted with the disease.
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Fig. 7: Confusion matrices generated by the Miniset-DenseSENet and the other CNN
used for benchmarking. 22
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Specificity =
TN

TN + FP
(5)

Sensitivity measures a test’s capacity to detect individuals affected by the disease
accurately.

Sensitivity =
TP

TP + FN
(6)

In these formulas, TP, TN, FP, and FN stand for True Positives, True Negatives,
False Positives, and False Negatives, respectively.
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