Abstract
INTRODUCTION The exponential growth of genomic datasets necessitates advanced analytical tools to effectively identify genetic loci from large-scale high throughput sequencing data. This study presents Deep-Block, a multi-stage deep learning framework that incorporates biological knowledge into its AI architecture to identify genetic regions as significantly associated with Alzheimer’s disease (AD). The framework employs a three-stage approach: (1) genome segmentation based on linkage disequilibrium (LD) patterns, (2) selection of relevant LD blocks using sparse attention mechanisms, and (3) application of TabNet and Random Forest algorithms to quantify single nucleotide polymorphism (SNP) feature importance, thereby identifying genetic factors contributing to AD risk.
METHODS The Deep-Block was applied to a large-scale whole genome sequencing (WGS) dataset from the Alzheimer’s Disease Sequencing Project (ADSP), comprising 7,416 non-Hispanic white participants (3,150 cognitively normal older adults (CN), 4,266 AD).
RESULTS 30,218 LD blocks were identified and then ranked based on their relevance with Alzheimer’s disease. Subsequently, the Deep-Block identified novel SNPs within the top 1,500 LD blocks and confirmed previously known variants, including APOE rs429358 and rs769449. Expression Quantitative Trait Loci (eQTL) analysis across 13 brain regions provided functional evidence for the identified variants. The results were cross-validated against established AD-associated loci from the European Alzheimer’s and Dementia Biobank (EADB) and the GWAS catalog.
DISCUSSION The Deep-Block framework effectively processes large-scale high throughput sequencing data while preserving SNP interactions during dimensionality reduction, minimizing bias and information loss. The framework’s findings are supported by tissue-specific eQTL evidence across brain regions, indicating the functional relevance of the identified variants. Additionally, the Deep-Block approach has identified both known and novel genetic variants, enhancing our understanding of the genetic architecture and demonstrating its potential for application in large-scale sequencing studies.
Competing Interest Statement
Dr. Saykin receives support from multiple NIH grants (P30 AG010133, P30 AG072976, R01 AG019771, R01 AG057739, U19 AG024904, R01 LM013463, R01 AG068193, T32 AG071444, U01 AG068057, U01 AG072177, and U19 AG074879). He has also received support from Avid Radiopharmaceuticals, a subsidiary of Eli Lilly (in kind contribution of PET tracer precursor) and participated in Scientific Advisory Boards (Bayer Oncology, Eisai, Novo Nordisk, and Siemens Medical Solutions USA, Inc) and an Observational Study Monitoring Board (MESA, NIH NHLBI), as well as External Advisory Committees for multiple NIA grants. He also serves as Editor-in-Chief of Brain Imaging and Behavior, a Springer-Nature Journal. The other authors declare no conflict of interest.
Funding Statement
This research was partially supported by the Alzheimer's Association (AA) under the grant number AARG 22-974053 and the National Institutes of Health (NIH): P30 AG010133, P30 AG072976, R01 AG019771, R01 AG057739, U01 AG024904, R01 LM013463, R01 AG068193, T32 AG071444, U01 AG068057, U01AG072177, U19AG074879, R03AG063250, and R01 LM012535.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Ethics Committee of Indiana University waived ethical approval for this work as only publicly available datasets were used.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
The revisions include a baseline comparison for LD block segmentation, improved annotations in Table 2, additional functional analyses (e.g., GTEx, VEP), acknowledgment of ancestry-related limitations, enhanced justification for using TabNet, and detailed strategies for avoiding overfitting.
Data Availability
All data produced in the present study are available upon reasonable request to the authors.