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Abstract 

INTRODUCTION: 

The exponential growth of genomic datasets necessitates advanced analytical tools to 

effectively identify genetic loci from large-scale high throughput sequencing data. This 

study presents Deep-Block, a multi-stage deep learning framework that incorporates 

biological knowledge into its AI architecture to identify genetic regions as significantly 

associated with Alzheimer's disease (AD). The framework employs a three-stage 

approach: (1) genome segmentation based on linkage disequilibrium (LD) patterns, (2) 

selection of relevant LD blocks using sparse attention mechanisms, and (3) application 

of TabNet and Random Forest algorithms to quantify single nucleotide polymorphism 

(SNP) feature importance, thereby identifying genetic factors contributing to AD risk.  

METHODS: 

The Deep-Block was applied to a large-scale whole genome sequencing (WGS) dataset 

from the Alzheimer's Disease Sequencing Project (ADSP), comprising 7,416 non-

Hispanic white participants (3,150 cognitively normal older adults (CN), 4,266 AD).  

RESULTS: 

30,218 LD blocks were identified and then ranked based on their relevance with 

Alzheimer’s disease. Subsequently, the Deep-Block identified novel SNPs within the top 

1,500 LD blocks and confirmed previously known variants, including APOE rs429358 

and rs769449. Expression Quantitative Trait Loci (eQTL) analysis across 13 brain 

regions provided functional evidence for the identified variants. The results were cross-

validated against established AD-associated loci from the European Alzheimer's and 

Dementia Biobank (EADB) and the GWAS catalog.  
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DISCUSSION: 

The Deep-Block framework effectively processes large-scale high throughput 

sequencing data while preserving SNP interactions during dimensionality reduction, 

minimizing bias and information loss. The framework's findings are supported by tissue-

specific eQTL evidence across brain regions, indicating the functional relevance of the 

identified variants. Additionally, the Deep-Block approach has identified both known and 

novel genetic variants, enhancing our understanding of the genetic architecture and 

demonstrating its potential for application in large-scale sequencing studies. 
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1 Introduction 

The advancement of deep learning in artificial intelligence has introduced new 

frameworks for analyzing complex genetic inheritance patterns, enhancing the 

interpretation of genomic data 1-4. For complex diseases such as Alzheimer's disease 

(AD), there is a critical need for advanced analytic tools provided by Artificial Intelligence 

(AI) to decipher the complexities of human genetic makeup 4-6. The complexity of 

genomic studies necessitates innovative and adaptive approaches that transcend 

traditional machine learning techniques to analyze and elucidate these intricate genetic 

interactions 7, 8. The high dimensionality and large sample sizes characteristic of genetic 

data in AD research underscore the necessity for methods capable of navigating the 

complex landscape 9-11. While several machine learning-based dimensionality reduction 

methods have been proposed, they have encountered challenges such as loss of 

phenotypic association information during the reduction process, reproducibility issues, 

and data-dependent inconsistencies in results 12-14.  

Here, we present Deep-Block, a deep learning framework designed to address the 

complexities of genomic sequencing data through targeted analysis of whole genome 

sequencing (WGS) data. Deep-Block employs a linkage disequilibrium (LD) block-based 

approach to systematically identify significant genetic regions, aiming to preserve vital 

phenotypic associations and minimize the loss of genetic information crucial for 

understanding disease phenotypes. The framework incorporates advanced machine 

learning and genomic imputation techniques 15-17 to ensure a comprehensive dataset 

without any missing values for analysis. Furthermore, the integration of the TabNet 

model 18, 19, an attention-based neural network, enhances the process by providing a 
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detailed assessment of feature importance within the genetic data, thus enriching the 

analysis. The calculation of Phenotype Influence Scores (PIS) offers additional insights 

into the genetic basis of the disease, informing future research directions. The 

framework includes Expression Quantitative Trait Loci (eQTL) analysis across multiple 

brain regions to examine the biological context of identified variants. Comparative 

analysis with conventional sliding window approaches was performed to evaluate the 

identification of AD-associated variants. 

Application of Deep-Block to a large-scale WGS dataset from the Alzheimer's Disease 

Sequencing Project (ADSP) Release 3, comprising 7,416 non-Hispanic white 

participants, demonstrated its capacity to effectively manage complex genomic data and 

identify single nucleotide polymorphisms (SNPs) as associated with AD. The Deep-

Block framework identified AD-associated genetic loci, including well-known AD SNPs 

such as APOE rs429358 and rs769449 and novel single nucleotide polymorphisms 

(SNPs) not previously reported in AD genetic association studies, particularly within the 

top-performing LD blocks. The identified variants were examined through tissue-specific 

expression analysis to investigate their potential relationship with AD pathogenesis. 

 

2 Methods 

2.1 Data Collection and Quality Control 

The ADSP participants were classified as AD cases or cognitively normal controls based 

on a comprehensive diagnostic framework. AD diagnoses were established through 

clinical diagnostic criteria, including detailed medical history, cognitive evaluations, and 

neuropsychological testing. Where available, these clinical assessments were 
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supplemented with biomarker data, including cerebrospinal fluid measurements of 

amyloid-beta and tau proteins, and neuroimaging data indicating amyloid deposition.  

The ADSP participants have WGS data sequenced using multiple platforms, including 

IlluminaHiSeq2000 and IlluminaHiSeqXTen. This release (R3) includes 16,906 whole-

genome sequences (WGS), processed and curated as part of the project. The release 

contains CRAMs, gVCFs, and quality-controlled project-level VCFs (pVCFs) for 

autosomal biallelic single nucleotide variants (SNVs) and indels, along with structural 

variant (SV) calls generated by Manta, Smoove, and Strelka variant callers. The WGS 

data were called by the Genome Center for Alzheimer’s Disease (GCAD) using VCPA 

1.1, a functionally equivalent CCDG/TOPMed pipeline. WGS data underwent 

comprehensive quality control (QC) procedures, including SNP call rates > 95%, Hardy-

Weinberg equilibrium P values < 1 × 10^-6, minor allele frequencies (MAF) > 1%, 

absence of sex mismatches, and sample call rates > 95%. To mitigate false 

associations due to population stratification, the study analyzed genome-wide 

genotyping data from 7,416 non-Hispanic White (NHW) participants (3,150 cognitively 

normal individuals (CN) and 4,266 AD patients), encompassing 10,764,329 SNPs. The 

male sex ratio was 56.3% for AD patients (mean age 70.1 years) and 60.7% for CN 

individuals (mean age 80.2 years). 

2.2 Algorithm Implementation and Analysis 

The Deep-Block framework employs a structured, three-stage process to analyze large-

scale WGS data: 

2.2.1: Segmentation of whole genome into LD blocks 

Following QC, the WGS dataset was segmented into linkage disequilibrium (LD) blocks 
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using Plink software (v1.90b6.21 64-bit). The parameters were set as follows: the LD 

measure was r2 with a threshold of 0.9, window size of 50 variants, and maximum 

window physical size of 100 kilobases. LD blocks were then identified based on the 

genomic positions of SNPs and the extent of LD between adjacent SNPs. This 

configuration identified 30,218 LD Blocks, forming the basis for subsequent analyses. 

2.2.1.1: Comparative Analysis of Segmentation Approaches  

To evaluate the effectiveness of the LD block-based segmentation approach, we 

conducted experiments with baseline methods using the top 1,500 LD blocks. A sliding 

window approach 10 using fixed windows of 200 variants was implemented as the 

baseline for comparison. For each method, SNPs were prioritized based on their 

computed importance scores: Deep-Block with LD-based segmentation utilized 

phenotype influence scores, while Random Forest and TabNet with fixed window 

segmentation used their respective feature importance metrics.  

2.2.2: Imputation of missing genotype data 

Deep-Block utilizes machine learning approaches to impute missing genotype data 

within the LD blocks, a method supported by recent studies 15-17. To identify the most 

suitable imputer for imputing missing genotype data, preliminary experiments were 

conducted on the APOE gene region within the ADSP WGS dataset, assuming SNPs of 

this region are contained within LD blocks. The ADSP R3 WGS data, comprising 16,869 

individuals, included 793 variants from the APOE gene region. After QC, the missing 

data proportion in this region was 4.14E-03. For the performance assessment of 

imputers, the missing rate was artificially increased to 8.70E-03. The modified dataset 
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was then processed using the TopMed Imputer, establishing a benchmark for comparing 

the efficiency of other imputation methods. Several  imputers were used: 1-NN, 5-NN, 

10-NN, GAN, Iterative, MissForest 20, and Simple Imputer. All methods were applied to 

data with the same artificially increased proportion of missing genotype data to ensure 

consistent evaluation. The scikit-learn package 21 was used for machine learning 

imputers and the GAIN package 22 for the GAN Imputer. 

The Simple Imputer utilizes mean, median, or mode imputation to fill missing values 

with the most representative statistic of the available data. The k-Nearest Neighbors (k-

NN) Imputers (1-NN, 5-NN, and 10-NN) leverage data point similarity to impute missing 

values based on the nearest neighbors' values. The GAN Imputer uses Generative 

Adversarial Networks to produce synthetic data mimicking the original data distribution, 

thus imputing missing values. The Iterative Imputer employs a round-robin approach, 

modeling each feature with missing values as a function of other features stepwise, 

capturing complex interactions and dependencies. The MissForest Imputer utilizes a 

Random Forest approach, leveraging multiple decision trees to accurately predict 

missing values. 

The performance of these methods was evaluated using five well-established metrics: 

accuracy, Root Mean Squared Error (RMSE), R-squared (R2), Mean Absolute Error 

(MAE), and Normalized RMSE (NRMSE). The accuracy quantifies the proportion of 

correctly imputed values, directly reflecting an imputer's performance. The RMSE 

measures the average magnitude of imputation errors, providing a straightforward 

accuracy metric. The R2 indicates the proportion of variance in the original data 

explained by the imputed data, offering insights into the imputation method's ability to 
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preserve data structure. The MAE calculates the average absolute error between 

imputed and actual values, presenting error distribution without directional bias. The 

NRMSE normalizes RMSE to the dataset range, facilitating the performance 

comparison across differently scaled datasets. 

2.2.3: Identification of Key LD blocks and phenotype association 

The final stage identifies key LD blocks as significantly associated with the AD 

phenotype using TabNet, a deep learning model optimized for efficient tabular data 

processing 18. TabNet was selected for its key advantages: simultaneous feature 

selection and engineering capabilities, interpretability through sparse attention 

mechanisms, and optimized architecture for large-scale tabular data processing. Given 

the high-dimensional nature of our genetic data (10,764,329 variants across 30,218 LD 

blocks), we implemented several key strategies to prevent overfitting. These include L1 

regularization (lambda_sparse=1e-3) to enforce sparsity in feature selection, learning 

rate scheduling with step decay (step_size=10, gamma=0.9) to optimize model 

convergence, and early stopping with patience monitoring to prevent unnecessary 

model complexity. For model validation, we maintained consistent 80/20 train-validation 

splits across all analyses. To validate this choice, we conducted a comparative analysis 

between TabNet and Random Forest approaches. The genome was segmented into 

53,822 windows, each containing 200 variants, ensuring comprehensive coverage. Both 

models were applied to each window to assess prediction accuracy. The top 1,500 

windows were selected based on accuracy metrics for each model, and feature 

importance was calculated for 299,822 SNPs within these windows using each model's 

respective feature importance metrics. Incremental addition of top-ranked features 
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showed that TabNet consistently outperformed Random Forest in AUC scores (average 

AUC of 0.56 versus 0.54), supporting our model selection. TabNet's architecture 

combines the interpretability of decision tree-based models with deep learning 

capabilities, featuring an encoder-decoder structure, feature transformers, and attentive 

transformers. TabNet's encoder processes raw tabular data, selecting relevant features 

through a sequential multi-step procedure using feature transformers. These 

transformers apply non-linear transformations to enhance the model's learning 

capabilities. The attentive transformer, a key encoder component, employs the 

sparsemax normalization function to focus selectively on the most relevant features, 

optimizing model interpretability and efficiency. This stage uses TabNet to identify LD 

Blocks with high phenotypic relevance, focusing on features critically associated with 

AD. TabNet's decoder reconstructs features from the original dataset, identifying key 

features within the top LD Blocks. This process assigns PIS to significant features, 

reflecting their phenotypic impact. The method integrates TabNet's feature importance 

metrics with the Mean Decrease Impurity (MDI) metric from Random Forest, offering a 

systematic approach to understanding genetic influences on phenotypic traits (Figure 

1). 

This approach combines the strengths of both metrics to identify the most significant 

AD-associated genetic markers, offering a robust method for detecting key genetic 

markers within LD blocks. The PIS is calculated using the following combined formula: 

𝑃𝐼𝑆𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑_𝑆𝑊𝐴𝑇𝑗 =  𝐼 ∙ 𝑀𝑎𝑔𝑔−𝑏,𝑗 + (1 − 𝐼) ∙ 𝑀𝐷𝐼𝑗 

where I is an indicator variable that is automatically set to 1 when the TabNet model 

yields a higher predictive accuracy in phenotype-related classification using previously 
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selected features, and is automatically set to 0 when the Random Forest algorithm 

shows superior performance in the same task. 𝑀𝑎𝑔𝑔−𝑏,𝑗, where b represents the batch 

index for the current training iteration, the feature importance from the TabNet model, 

represents the aggregate feature importance mask for the j-th feature. The calculation 

uses the total number of decision steps (N), the learning rate at each decision step 

(𝜂𝑏[𝑖]), and a binary mask (𝑀𝑏,𝑗[𝑖]) that is set to 1 if the j-th feature is utilized at the i-th 

decision step, and 0 otherwise. Here, D represents the total number of features. The 

corresponding formula is as follows: 

𝑀𝑎𝑔𝑔−𝑏,𝑗=
∑ 𝜂𝑏[𝑖]𝑀𝑏,𝑗[𝑖]𝑁

𝑖=1

∑ ∑ 𝜂𝑏[𝑖]𝑀𝑏,𝑗[𝑖]𝑁
𝑖=1

𝐷
𝑗=1

 

𝑀𝐷𝐼𝑗, the Mean Decrease Impurity from the Random Forest algorithm, quantifies the 

impurity reduction for a specific SNP (𝑆𝑁𝑃𝑗). This calculation encompasses the total 

number of decision trees in the model (𝑁𝑡𝑟𝑒𝑒𝑠), each tree (t), and the node (i), using 𝑆𝑁𝑃𝑗 

for splitting, includes the number of samples at node i before the splitting (𝑛𝑖
𝑡) and the 

impurity reduction at this node (∆𝑖(𝑠𝑖
𝑡)). The MDI is calculated as follows: 

𝑀𝐷𝐼𝑗 =
𝐼

𝑁𝑡𝑟𝑒𝑒𝑠
∑ ∑

𝑛𝑖
𝑡

𝑛𝑟𝑜𝑜𝑡
𝑡 ∆𝑖(𝑠𝑖

𝑡)
𝑖∈𝐼𝑗

𝑡

𝑁𝑡𝑟𝑒𝑒𝑠

𝑡=1
 

2.3 Functional Analysis and Annotation 

We employed multiple approaches to characterize the functional implications of 

identified variants. The GTEx v10 database was used to identify eQTL signals  across 

13 brain-specific tissues, including the hypothalamus, hippocampus, cerebellum, cortex, 

nucleus accumbens, substantia nigra, anterior cingulate cortex, putamen, amygdala, 

cerebellar hemisphere, frontal cortex, spinal cord, and caudate. Statistical significance 

was assessed at p < 0.05. The Variant Effect Predictor (VEP) with GRCh38 human 
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genome assembly and ANNOVAR were used to determine the genomic context of the 

variants. 

 

3 Results 

This study analyzed large-scale WGS data from the ADSP, comprising 7,416 non-

Hispanic White individuals (4,266 with Alzheimer's disease and 3,150 cognitively normal 

older adults). After quality control procedures, several imputation methods were 

comparatively evaluated: Simple, GAN, 1-NN, 5-NN, 10-NN, Iterative, MissForest, and 

TopMed Imputers. The assessment utilized metrics including accuracy, Root Mean 

Squared Error (RMSE), R-squared (R2), Mean Absolute Error (MAE), and Normalized 

RMSE (NRMSE). 

The MissForest Imputer demonstrated superior performance among the machine 

learning-based methods, achieving the highest accuracy (0.999359), lowest RMSE 

(0.0039), and highest R2 (0.9993). The 5-NN and 10-NN Imputers also performed well, 

with accuracy rates of 0.999734 and 0.999626, R2 values of 0.9993, and RMSEs of 

0.004 and 0.0041, respectively. The TopMed imputation server achieved an accuracy of 

0.996416, RMSE of 0.0047, and R2 of 0.9081. While effective in reducing RMSE, it 

showed a lower capacity to capture dataset variance compared to the leading machine 

learning methods (Figure 2, Table 1).  

Computation time for imputation methods was crucial due to the large-scale WGS data. 

Table S1 shows that the MissForest Imputer required up to 327 seconds for the largest 

block size, significantly longer than the 5-NN Imputer, which processed the same block 

in just over 50 milliseconds. Balancing imputation accuracy and processing efficiency, 
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the 5-NN Imputer was selected as the most suitable imputation method for our dataset. 

This choice was based on its high accuracy, and fast LD blocks were determined using 

Plink, resulting in 30,218 LD blocks with an average size of 388 genetic variants. 

Genomic regions not covered by LD blocks, comprising only 0.19% of the genome, 

were excluded from the analysis due to their negligible size. Figure 3B demonstrates 

the correlation between the number of blocks per chromosome and chromosome 

length. TabNet was then applied to the LD blocks to assess phenotype prediction 

accuracy using a binary classification model. Blocks were ranked based on prediction 

accuracy, and as the number of blocks increased, the analysis showed that the number 

of important features with non-zero TabNet feature importance did not increase 

significantly. Figure 3A illustrates this by depicting genetic variants within the key blocks 

as blue bars. The analysis extended up to 1500 blocks, revealing a plateau in the count 

of important features, indicating that the critical variants for phenotype prediction were 

already captured within the initial top blocks. This suggests that further analysis beyond 

these blocks may not provide additional meaningful insights.  

To evaluate our LD block-based approach, we conducted a comparison with baseline 

segmentation methods using the top 1,500 LD blocks. For each method, we 

incrementally selected SNPs based on their importance scores and assessed their 

predictive performance. Analysis showed that the Deep-Block framework achieved an 

average AUC of 0.66, while fixed sliding window-based approaches using Random 

Forest and TabNet showed average AUCs of 0.54 and 0.56, respectively. This pattern 

was consistent across different numbers of selected SNPs, as visualized in Figure 4A, 

which presents the AUC scores according to the number of SNPs used in the analysis 
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for each method.  

The study analyzed 615,282 genetic variants within the top 1500 blocks, calculating the 

PIS for each genetic variant using the methodology outlined in the Methods section. 

Table 2 presents the top 30 genetic variants with the highest PIS. The SNP rs429358 

within the APOE gene on chromosome 19, a well-known AD risk SNP 23, demonstrated 

the highest importance score. Other high-importance SNPs on chromosome 19 include 

rs11556505 in TOMM40 24) and rs34342646 in NECTIN2 25, further emphasizing the 

relevance of chromosome 19 in AD. The study also confirmed previously reported AD-

associated SNPs, including rs5117 and rs483082 in APOC1, and rs10414043 (APOC1), 

rs10119 (TOMM40), and rs71352238 (TOMM40). 

In addition to confirming the importance of known genes, this study identified novel 

high-importance SNPs not previously identified in genetic association studies for AD, 

particularly within the top 30 variants. Notably, the study identified novel variants such 

as rs200986288, rs199988716, and rs202143966. Additionally, previously unreported 

genes associated with AD were identified, including LOC107984083 (rs78790997) and 

LOC728339 (rs75997270). 

Figure 4B displays vertically aligned, symmetrical Manhattan plots (Miami plot) from 

two genetic association analysis methods: Deep-Block and Plink. The upper plot depicts 

the PIS derived from Deep-Block, while the lower plot shows the statistical significance 

levels (-log10 P-value) obtained using Plink across all chromosomes. Both plots arrange 

chromosomes along the x-axis, offering a chromosomal position view of the analyzed 

genomic variants. Each plot highlights the top 40 genetic variants using color-coded 
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dots: red for the top 1-10 genetic variants, blue for the top 11-20 genetic variants, green 

for the top 21-30 genetic variants, and gray for the top 31-40 genetic variants. Of note, 

the Deep-Block approach identified the same genetic variants that the Plink identified as 

well as novel genetic variants that the Plink could not identify. 

To contextualize the Deep-Block findings, the identified loci were compared to 

established AD-linked genetic loci reported in the European Alzheimer's and Dementia 

Biobank (EADB) and the recently updated GWAS catalog 26. The validation process 

benefited from ancestral homogeneity, as both our study cohort (non-Hispanic white 

participants) and the comparative databases are predominantly of European descent, 

ensuring methodological consistency in the assessment of our framework's 

performance. The analysis aligned with 15 genetic loci from the GWAS catalog, 

distributed across various tiers (3 in Tier1, 1 in Tier2, 2 in Tier3, 2 unverified, and 3 in 

the 'Other' category), as detailed in Table S1. This comparison excluded the well-studied 

APOE, TOMM40/APOC1/NECTIN2 loci to focus on other significant genetic 

associations. The results were also compared against databases referenced in the 

GWAS catalog, including IGAP2 27, PGC1 28, IGAP2+UKB 29, GR@ACE 30, PGC2 31, 

and EADB 32. Table S2 highlights Tier1 genes ABCA7, BIN1, and CR1, identified in 

multiple studies. This confirms the Deep-Block method's relevance to known AD genetic 

markers and indicates both confirmatory and potentially novel genetic associations with 

the disease. 

4 Discussion 

This study developed and applied the Deep-Block framework to large-scale WGS data 

from the ADSP to investigate the genetic basis of AD. The approach centered on 
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utilizing LD blocks combined with automated imputation to improve the accuracy of 

genetic analysis. The PIS-based variant prioritization identified known AD-associated 

variants, with PIS values of 8.00E-04, 7.23E-04, and 6.85E-04 observed for established 

variants in APOE (rs429358), TOMM40 (rs11556505), and NECTIN2 (rs34342646) 

genes, respectively (Table 2). To facilitate comprehensive analysis of genetic 

associations and reproducibility of our findings, we have provided the complete list of 

615,281 SNPs and their corresponding PIS values, along with the source code and 

example datasets in our Deep-Block GitHub repository 

(https://github.com/taehojo/Deep-Block/). The predictive performance analysis (Figure 

4A) demonstrates that SNPs selected based on PIS values show increasing AUC 

scores, validating the utility of PIS rankings in variant identification. While traditional 

GWAS approaches rely on established p-value thresholds, our Deep-Block framework 

takes a more flexible approach, using known AD-associated variants as empirical 

benchmarks for significance assessment. 

The eQTL analysis across brain regions revealed region-specific expression patterns. 

Our integrative approach showed that several variants had strong functional evidence. 

In particular, rs200986288 demonstrated widespread effects across brain regions (506 

associations, average β=0.42), while rs75997270 showed consistent upregulation 

(P=2.75e-40, β=0.68) across analyzed brain regions. These findings suggest potential 

functional roles beyond mere LD-based associations, though further functional analysis 

through fine-mapping and cross-population studies will be valuable for confirming the 

functionality. The cerebellar hemisphere showed 145 eQTL associations, cerebellum 

131, and nucleus accumbens basal ganglia 124. Rs75997270, an intronic variant in 
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FRG1-DT (lncRNA), had a significant association (P=2.75e-40) in the nucleus 

accumbens and was detected across all analyzed brain regions. The APOE 

downstream variant rs75627662 and APOC1 intronic variant rs5117 were detected in 

the nucleus accumbens basal ganglia. Rs200986288 was detected in 506 eQTL 

associations across the analyzed brain regions. The VEP and ANNOVAR analyses 

showed rs75627662 as an APOE downstream variant, rs5117 as an APOC1 intronic 

variant, rs111789331 as an upstream variant of APOC1P1, and rs75997270 as an 

intronic variant within FRG1-DT. 

The analysis also identified additional genetic variants and genes (e.g., rs199988716, 

LOC107984083, and ANKRD30BL) associated with AD. However, this study used 

sequencing data from non-Hispanic white individuals, which may limit the broad 

applicability of the findings. As more ancestrally diverse cohorts become available in the 

ADSP, we look forward to extending these analyses to ensure broader relevance and 

applicability of findings across different populations. 

 

Conclusion 

This study developed and applied the Deep-Block AI framework to large-scale ADSP 

WGS data for genetic association analysis for AD. The approach involved segmenting 

the whole genome into LD blocks and applying automated imputation of missing 

genotypes for data preprocessing. The Deep-Block framework identified AD-associated 

genetic loci, including both previously identified and novel SNPs, supported by tissue-

specific eQTL evidence across brain regions. The framework integrated eQTL analysis 

across brain regions and was compared with sliding window approaches in variant 
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identification. Compared to traditional methods such as Plink and SKAT-O 33, Deep-

Block uses LD structure and attention-based feature selection to analyze high-

dimensional genomic data more comprehensively, potentially capturing genetic 

interactions that are not detected by conventional approaches. Unlike SWAT-CNN 10, 

which utilizes fixed genomic fragments, Deep-Block segments the genome based on 

LD-defined regions, thereby improving the identification of biologically relevant patterns. 

This framework demonstrates its capability to analyze large-scale genomic data 

effectively and identified both known and novel genetic variants associated with 

Alzheimer’s disease. 
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data is supported through U01AG058589 (to Drs. Destefano, Boerwinkle, De Jager, 

Fornage, Seshadri, and Wijsman), U01AG058654 (to Drs. Haines, Bush, Farrer, Martin, 
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The ADGC cohorts include: Adult Changes in Thought (ACT) (U01 AG006781, U19 

AG066567), the Alzheimer’s Disease Research Centers (ADRC) (P30 AG062429, P30 

AG066468, P30 AG062421, P30 AG066509, P30 AG066514, P30 AG066530, P30 

AG066507, P30 AG066444, P30 AG066518, P30 AG066512, P30 AG066462, P30 

AG072979, P30 AG072972, P30 AG072976, P30 AG072975, P30 AG072978, P30 

AG072977, P30 AG066519, P30 AG062677, P30 AG079280, P30 AG062422, P30 

AG066511, P30 AG072946, P30 AG062715, P30 AG072973, P30 AG066506, P30 

AG066508, P30 AG066515, P30 AG072947, P30 AG072931, P30 AG066546, P20 

AG068024, P20 AG068053, P20 AG068077, P20 AG068082, P30 AG072958, P30 

AG072959), the Chicago Health and Aging Project (CHAP) (R01 AG11101, RC4 

AG039085, K23 AG030944), Indiana Memory and Aging Study (IMAS) (R01 

AG019771), Indianapolis Ibadan (R01 AG009956, P30 AG010133), the Memory and 

Aging Project (MAP) ( R01 AG17917), Mayo Clinic (MAYO) (R01 AG032990, U01 

AG046139, R01 NS080820, RF1 AG051504, P50 AG016574), Mayo Parkinson’s 

Disease controls (NS039764, NS071674, 5RC2HG005605), University of Miami (R01 

AG027944, R01 AG028786, R01 AG019085, IIRG09133827, A2011048), the Multi-

Institutional Research in Alzheimer’s Genetic Epidemiology Study (MIRAGE) (R01 

AG09029, R01 AG025259), the National Centralized Repository for Alzheimer’s Disease 
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and Related Dementias (NCRAD) (U24 AG021886), the National Institute on Aging Late 

Onset Alzheimer’s Disease Family Study (NIA- LOAD) (U24 AG056270), the Religious 

Orders Study (ROS) (P30 AG10161, R01 AG15819), the Texas Alzheimer’s Research 

and Care Consortium (TARCC) (funded by the Darrell K Royal Texas Alzheimer’s 

Initiative), Vanderbilt University/Case Western Reserve University (VAN/CWRU) (R01 

AG019757, R01 AG021547, R01 AG027944, R01 AG028786, P01 NS026630, and 

Alzheimer’s Association), the Washington Heights-Inwood Columbia Aging Project 

(WHICAP) (RF1 AG054023), the University of Washington Families (VA Research Merit 

Grant, NIA: P50AG005136, R01AG041797, NINDS: R01NS069719), the Columbia 

University Hispanic Estudio Familiar de Influencia Genetica de Alzheimer (EFIGA) (RF1 

AG015473), the University of Toronto (UT) (funded by Wellcome Trust, Medical 

Research Council, Canadian Institutes of Health Research), and Genetic Differences 

(GD) (R01 AG007584). The CHARGE cohorts are supported in part by National Heart, 

Lung, and Blood Institute (NHLBI) infrastructure grant HL105756 (Psaty), 

RC2HL102419 (Boerwinkle) and the neurology working group is supported by the 

National Institute on Aging (NIA) R01 grant AG033193. 

The CHARGE cohorts participating in the ADSP include the following: Austrian Stroke 

Prevention Study (ASPS), ASPS-Family study, and the Prospective Dementia Registry-

Austria (ASPS/PRODEM-Aus), the Atherosclerosis Risk in Communities (ARIC) Study, 

the Cardiovascular Health Study (CHS), the Erasmus Rucphen Family Study (ERF), the 

Framingham Heart Study (FHS), and the Rotterdam Study (RS). ASPS is funded by the 

Austrian Science Fond (FWF) grant number P20545-P05 and P13180 and the Medical 

University of Graz. The ASPS-Fam is funded by the Austrian Science Fund (FWF) 
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project I904), the EU Joint Programme – Neurodegenerative Disease Research (JPND) 

in frame of the BRIDGET project (Austria, Ministry of Science) and the Medical 

University of Graz and the Steiermärkische Krankenanstalten Gesellschaft. PRODEM-

Austria is supported by the Austrian Research Promotion agency (FFG) (Project No. 

827462) and by the Austrian National Bank (Anniversary Fund, project 15435. ARIC 

research is carried out as a collaborative study supported by NHLBI contracts 

(HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, 

HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, 

HHSN268201100011C, and HHSN268201100012C). Neurocognitive data in ARIC is 

collected by U01 2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, 

2U01HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD), and with previous brain 

MRI examinations funded by R01-HL70825 from the NHLBI. CHS research was 

supported by contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, 

N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, 

N01HC85086, and grants U01HL080295 and U01HL130114 from the NHLBI with 

additional contribution from the National Institute of Neurological Disorders and Stroke 

(NINDS). Additional support was provided by R01AG023629, R01AG15928, and 

R01AG20098 from the NIA. FHS research is supported by NHLBI contracts N01-HC-

25195 and HHSN268201500001I. This study was also supported by additional grants 

from the NIA (R01s AG054076, AG049607 and AG033040 and NINDS (R01 

NS017950). The ERF study as a part of EUROSPAN (European Special Populations 

Research Network) was supported by European Commission FP6 STRP grant number 

018947 (LSHG-CT-2006-01947) and also received funding from the European 
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Community’s Seventh Framework Programme (FP7/2007-2013)/grant agreement 

HEALTH-F4- 2007-201413 by the European Commission under the programme “Quality 

of Life and Management of the Living Resources” of 5th Framework Programme (no. 

QLG2-CT-2002- 01254). High-throughput analysis of the ERF data was supported by a 

joint grant from the Netherlands Organization for Scientific Research and the Russian 

Foundation for Basic Research (NWO-RFBR 047.017.043). The Rotterdam Study is 

funded by Erasmus Medical Center and Erasmus University, Rotterdam, the 

Netherlands Organization for Health Research and Development (ZonMw), the 

Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture 

and Science, the Ministry for Health, Welfare and Sports, the European Commission 

(DG XII), and the municipality of Rotterdam. Genetic data sets are also supported by 

the Netherlands Organization of Scientific Research NWO Investments 

(175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal 

Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; 

RIDE2), and the Netherlands Genomics Initiative (NGI)/Netherlands Organization for 

Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project 

050-060-810. All studies are grateful to their participants, faculty and staff. The content 

of these manuscripts is solely the responsibility of the authors and does not necessarily 

represent the official views of the National Institutes of Health or the U.S. Department of 

Health and Human Services. 

The FUS cohorts include: the Alzheimer’s Disease Research Centers (ADRC) (P30 

AG062429, P30 AG066468, P30 AG062421, P30 AG066509, P30 AG066514, P30 

AG066530, P30 AG066507, P30 AG066444, P30 AG066518, P30 AG066512, P30 
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AG066462, P30 AG072979, P30 AG072972, P30 AG072976, P30 AG072975, P30 

AG072978, P30 AG072977, P30 AG066519, P30 AG062677, P30 AG079280, P30 

AG062422, P30 AG066511, P30 AG072946, P30 AG062715, P30 AG072973, P30 

AG066506, P30 AG066508, P30 AG066515, P30 AG072947, P30 AG072931, P30 

AG066546, P20 AG068024, P20 AG068053, P20 AG068077, P20 AG068082, P30 

AG072958, P30 AG072959), Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

(U19AG024904), Amish Protective Variant Study (RF1AG058066), Cache County Study 

(R01AG11380, R01AG031272, R01AG21136, RF1AG054052), Case Western Reserve 

University Brain Bank (CWRUBB) (P50AG008012), Case Western Reserve University 

Rapid Decline (CWRURD) (RF1AG058267, NU38CK000480), CubanAmerican 

Alzheimer’s Disease Initiative (CuAADI) (3U01AG052410), Estudio Familiar de 

Influencia Genetica en Alzheimer (EFIGA) (5R37AG015473, RF1AG015473, 

R56AG051876), Genetic and Environmental Risk Factors for Alzheimer Disease Among 

African Americans Study (GenerAAtions) (2R01AG09029, R01AG025259, 

2R01AG048927), Gwangju Alzheimer and Related Dementias Study (GARD) 

(U01AG062602), Hillblom Aging Network (2014-A-004-NET, R01AG032289, 

R01AG048234), Hussman Institute for Human Genomics Brain Bank (HIHGBB) 

(R01AG027944, Alzheimer’s Association “Identification of Rare Variants in Alzheimer 

Disease”), Ibadan Study of Aging (IBADAN) (5R01AG009956), Longevity Genes Project 

(LGP) and LonGenity (R01AG042188, R01AG044829, R01AG046949, R01AG057909, 

R01AG061155, P30AG038072), Mexican Health and Aging Study (MHAS) 

(R01AG018016), Multi-Institutional Research in Alzheimer’s Genetic Epidemiology 

(MIRAGE) (2R01AG09029, R01AG025259, 2R01AG048927), Northern Manhattan 
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Study (NOMAS) (R01NS29993), Peru Alzheimer’s Disease Initiative (PeADI) 

(RF1AG054074), Puerto Rican 1066 (PR1066) (Wellcome Trust 

(GR066133/GR080002), European Research Council (340755)), Puerto Rican 

Alzheimer Disease Initiative (PRADI) (RF1AG054074), Reasons for Geographic and 

Racial Differences in Stroke (REGARDS) (U01NS041588), Research in African 

American Alzheimer Disease Initiative (REAAADI) (U01AG052410), the Religious 

Orders Study (ROS) (P30 AG10161, P30 AG72975, R01 AG15819, R01 AG42210), the 

RUSH Memory and Aging Project (MAP) (R01 AG017917, R01 AG42210Stanford 

Extreme Phenotypes in AD (R01AG060747), University of Miami Brain Endowment 

Bank (MBB), University of Miami/Case Western/North Carolina A&T African American 

(UM/CASE/NCAT) (U01AG052410, R01AG028786), and Wisconsin Registry for 

Alzheimer’s Prevention (WRAP) (R01AG027161 and R01AG054047). 

The four LSACs are: the Human Genome Sequencing Center at the Baylor College of 

Medicine (U54 HG003273), the Broad Institute Genome Center (U54HG003067), The 

American Genome Center at the Uniformed Services University of the Health Sciences 

(U01AG057659), and the Washington University Genome Institute (U54HG003079). 

Genotyping and sequencing for the ADSP FUS is also conducted at John P. Hussman 

Institute for Human Genomics (HIHG) Center for Genome Technology (CGT). 

Biological samples and associated phenotypic data used in primary data analyses were 

stored at Study Investigators institutions, and at the National Centralized Repository for 

Alzheimer’s Disease and Related Dementias (NCRAD, U24AG021886) at Indiana 

University funded by NIA. Associated Phenotypic Data used in primary and secondary 

data analyses were provided by Study Investigators, the NIA funded Alzheimer’s 
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Disease Centers (ADCs), and the National Alzheimer’s Coordinating Center (NACC, 

U24AG072122) and the National Institute on Aging Genetics of Alzheimer’s Disease 

Data Storage Site (NIAGADS, U24AG041689) at the University of Pennsylvania, funded 

by NIA. Harmonized phenotypes were provided by the ADSP Phenotype Harmonization 

Consortium (ADSP-PHC), funded by NIA (U24 AG074855, U01 AG068057 and R01 

AG059716) and Ultrascale Machine Learning to Empower Discovery in Alzheimer’s 

Disease Biobanks (AI4AD, U01 AG068057). This research was supported in part by the 

Intramural Research Program of the National Institutes of health, National Library of 

Medicine. Contributors to the Genetic Analysis Data included Study Investigators on 

projects that were individually funded by NIA, and other NIH institutes, and by private 

U.S. organizations, or foreign governmental or nongovernmental organizations. 

The ADSP Phenotype Harmonization Consortium (ADSP-PHC) is funded by NIA (U24 

AG074855, U01 AG068057 and R01 AG059716). The harmonized cohorts within the 

ADSP-PHC include: the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s study (A4 

Study), a secondary prevention trial in preclinical Alzheimer's disease, aiming to slow 

cognitive decline associated with brain amyloid accumulation in clinically normal older 

individuals. The A4 Study is funded by a public-private-philanthropic partnership, 

including funding from the National Institutes of Health-National Institute on Aging, Eli 

Lilly and Company, Alzheimer's Association, Accelerating Medicines Partnership, GHR 

Foundation, an anonymous foundation and additional private donors, with in-kind 

support from Avid and Cogstate. The companion observational Longitudinal Evaluation 

of Amyloid Risk and Neurodegeneration (LEARN) Study is funded by the Alzheimer's 

Association and GHR Foundation. The A4 and LEARN Studies are led by Dr. Reisa 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Sperling at Brigham and Women's Hospital, Harvard Medical School and Dr. Paul Aisen 

at the Alzheimer's Therapeutic Research Institute (ATRI), University of Southern 

California. The A4 and LEARN Studies are coordinated by ATRI at the University of 

Southern California, and the data are made available through the Laboratory for Neuro 

Imaging at the University of Southern California. The participants screening for the A4 

Study provided permission to share their de-identified data in order to advance the 

quest to find a successful treatment for Alzheimer's disease. We would like to 

acknowledge the dedication of all the participants, the site personnel, and all of the 

partnership team members who continue to make the A4 and LEARN Studies possible. 

The complete A4 Study Team list is available on: a4study.org/a4-study-team.; the Adult 

Changes in Thought study (ACT), U01 AG006781, U19 AG066567; Alzheimer’s Disease 

Neuroimaging Initiative (ADNI): Data collection and sharing for this project was funded 

by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health 

Grant U01 AG024904) and DOD ADNI (Department of Defense award number 

W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National 

Institute of Biomedical Imaging and Bioengineering, and through generous contributions 

from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery 

Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; 

CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; 

EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; 

Fujirebio; GE Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy Research & 

Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development 

LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;Meso Scale Diagnostics, LLC.; NeuroRx 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; 

Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition 

Therapeutics. The Canadian Institutes of Health Research is providing funds to support 

ADNI clinical sites in Canada. Private sector contributions are facilitated by the 

Foundation for the National Institutes of Health (www.fnih.org). The grantee organization 

is the Northern California Institute for Research and Education, and the study is 

coordinated by the Alzheimer's Therapeutic Research Institute at the University of 

Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging 

at the University of Southern California; Estudio Familiar de Influencia Genetica en 

Alzheimer (EFIGA): 5R37AG015473, RF1AG015473, R56AG051876; Memory & Aging 

Project at Knight Alzheimer’s Disease Research Center (MAP at Knight ADRC): The 

Memory and Aging Project at the Knight-ADRC (Knight-ADRC). This work was 

supported by the National Institutes of Health (NIH) grants R01AG064614, 

R01AG044546, RF1AG053303, RF1AG058501, U01AG058922 and R01AG064877 to 

Carlos Cruchaga. The recruitment and clinical characterization of research participants 

at Washington University was supported by NIH grants P30AG066444, P01AG03991, 

and P01AG026276. Data collection and sharing for this project was supported by NIH 

grants RF1AG054080, P30AG066462, R01AG064614 and U01AG052410. We thank 

the contributors who collected samples used in this study, as well as patients and their 

families, whose help and participation made this work possible. This work was 

supported by access to equipment made possible by the Hope Center for Neurological 

Disorders, the Neurogenomics and Informatics Center (NGI: 

https://neurogenomics.wustl.edu/) and the Departments of Neurology and Psychiatry at 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

Washington University School of Medicine; National Alzheimer’s Coordinating Center 

(NACC): The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC data 

are contributed by the NIA-funded ADRCs: P30 AG062429 (PI James Brewer, MD, 

PhD), P30 AG066468 (PI Oscar Lopez, MD), P30 AG062421 (PI Bradley Hyman, MD, 

PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 AG066514 (PI Mary Sano, 

PhD), P30 AG066530 (PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, PhD), 

P30 AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 

AG066512 (PI Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 

AG072979 (PI David Wolk, MD), P30 AG072972 (PI Charles DeCarli, MD), P30 

AG072976 (PI Andrew Saykin, PsyD), P30 AG072975 (PI David Bennett, MD), P30 

AG072978 (PI Neil Kowall, MD), P30 AG072977 (PI Robert Vassar, PhD), P30 

AG066519 (PI Frank LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), 

P30 AG079280 (PI Eric Reiman, MD), P30 AG062422 (PI Gil Rabinovici, MD), P30 

AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 (PI Linda Van Eldik, PhD), P30 

AG062715 (PI Sanjay Asthana, MD, FRCP), P30 AG072973 (PI Russell Swerdlow, 

MD), P30 AG066506 (PI Todd Golde, MD, PhD), P30 AG066508 (PI Stephen 

Strittmatter, MD, PhD), P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 

(PI Suzanne Craft, PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 

(PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 

(PI Justin Miller, PhD), P20 AG068077 (PI Gary Rosenberg, MD), P20 AG068082 (PI 

Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI 

James Leverenz, MD); National Institute on Aging Alzheimer’s Disease Family Based 

Study (NIA-AD FBS): U24 AG056270; Religious Orders Study (ROS): 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

P30AG10161,R01AG15819, R01AG42210; Memory and Aging Project (MAP - Rush): 

R01AG017917, R01AG42210; Minority Aging Research Study (MARS): R01AG22018, 

R01AG42210; Washington Heights/Inwood Columbia Aging Project (WHICAP): RF1 

AG054023;and Wisconsin Registry for Alzheimer’s Prevention (WRAP): R01AG027161 

and R01AG054047. Additional acknowledgments include the National Institute on Aging 

Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, U24AG041689) at the 

University of Pennsylvania, funded by NIA. 

 

Consent Statement 

Consent from human subjects was not necessary for this study. 

References 

1. Zhou, J., & Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with 

deep learning–based sequence model. Nature Methods, 12(10), 931-934. 

https://doi.org/10.1038/nmeth.3547  

2. Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-Barwinska, A., Taylor, K. 

R., Assael, Y., Jumper, J., Kohli, P., & Kelley, D. R. (2021). Effective gene expression 

prediction from sequence by integrating long-range interactions. Nature Methods, 

18(10), 1196-1203. https://doi.org/10.1038/s41592-021-01252-x  

3. Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W., & Mostafavi, S. 

(2023). Obtaining genetics insights from deep learning via explainable artificial 

intelligence. Nature Reviews Genetics, 24(2), 125-137. 

https://doi.org/10.1038/s41576-022-00532-2  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

4. Eraslan, G., Avsec, Ž., Gagneur, J., & Theis, F. J. (2019). Deep learning: new 

computational modelling techniques for genomics. Nature Reviews Genetics, 20(7), 

389-403. https://doi.org/10.1038/s41576-019-0122-6  

5. Berson, E., Sreenivas, A., Phongpreecha, T., Perna, A., Grandi, F. C., Xue, L., 

Ravindra, N. G., Payrovnaziri, N., Mataraso, S., Kim, Y., Espinosa, C., Chang, A. L., 

Becker, M., Montine, K. S., Fox, E. J., Chang, H. Y., Corces, M. R., Aghaeepour, N., 

& Montine, T. J. (2023). Whole genome deconvolution unveils Alzheimer’s resilient 

epigenetic signature. Nature communications, 14(1), 4947. 

https://doi.org/10.1038/s41467-023-40611-4  

6. Shigemizu, D., Akiyama, S., Suganuma, M., Furutani, M., Yamakawa, A., Nakano, Y., 

Ozaki, K., & Niida, S. (2023). Classification and deep-learning–based prediction of 

Alzheimer disease subtypes by using genomic data. Translational psychiatry, 13(1), 

232. https://doi.org/10.1038/s41398-023-02531-1  

7. Bettencourt, C., Skene, N., Bandres-Ciga, S., Anderson, E., Winchester, L. M., Foote, 

I. F., Schwartzentruber, J., Botia, J. A., Nalls, M., Singleton, A., Schilder, B. M., 

Humphrey, J., Marzi, S. J., Toomey, C. E., Kleifat, A. A., Harshfield, E. L., Garfield, V., 

Sandor, C., Keat, S., . . . Llewellyn, D. J. Artificial intelligence for dementia genetics 

and omics. Alzheimer's & dementia, n/a(n/a). 

https://doi.org/https://doi.org/10.1002/alz.13427  

8. Karczewski, K. J., & Snyder, M. P. (2018). Integrative omics for health and disease. 

Nature Reviews Genetics, 19(5), 299-310. https://doi.org/10.1038/nrg.2018.4  

9. Konietschke, F., Schwab, K., & Pauly, M. (2021). Small sample sizes: A big data 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

problem in high-dimensional data analysis. Stat Methods Med Res, 30(3), 687-701. 

https://doi.org/10.1177/0962280220970228  

10. Jo, T., Nho, K., Bice, P., Saykin, A. J., & Initiative, A. s. D. N. (2022). Deep learning-

based identification of genetic variants: application to Alzheimer’s disease 

classification. Briefings in Bioinformatics, 23(2), bbac022.  

11. Jo, T., Kim, J., Bice, P., Huynh, K., Wang, T., Arnold, M., Meikle, P. J., Giles, C., 

Kaddurah-Daouk, R., Saykin, A. J., & Nho, K. (2023). Circular-SWAT for deep 

learning based diagnostic classification of Alzheimer's disease: application to 

metabolome data. EBioMedicine, 97, 104820. 

https://doi.org/10.1016/j.ebiom.2023.104820  

12. Fujiwara, T., Kwon, O.-H., & Ma, K. L. (2020). Supporting Analysis of Dimensionality 

Reduction Results With Contrastive Learning. Ieee Transactions on Visualization and 

Computer Graphics. https://doi.org/10.1109/tvcg.2019.2934251  

13. Vogelstein, J. T., Bridgeford, E., Tang, M., Zheng, D., Douville, C., Burns, R., & 

Maggioni, M. (2021). Supervised Dimensionality Reduction for Big Data. Nature 

communications. https://doi.org/10.1038/s41467-021-23102-2  

14. Shetta, O., & Niranjan, M. (2020). Robust Subspace Methods for Outlier Detection in 

Genomic Data Circumvents the Curse of Dimensionality. Royal Society Open Science. 

https://doi.org/10.1098/rsos.190714  

15. An, U., Pazokitoroudi, A., Alvarez, M., Huang, L., Bacanu, S., Schork, A. J., Kendler, 

K., Pajukanta, P., Flint, J., Zaitlen, N., Cai, N., Dahl, A., & Sankararaman, S. (2023). 

Deep learning-based phenotype imputation on population-scale biobank data 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

increases genetic discoveries. Nature Genetics, 55(12), 2269-2276. 

https://doi.org/10.1038/s41588-023-01558-w  

16. Rubinacci, S., Delaneau, O., & Marchini, J. (2020). Genotype Imputation Using the 

Positional Burrows Wheeler Transform. Plos Genetics. 

https://doi.org/10.1371/journal.pgen.1009049  

17. Shishegar, R., Cox, T., Rolls, D. A., Bourgeat, P., Dore, V., Lamb, F., Robertson, J., 

Laws, S. M., Porter, T., Fripp, J., Tosun, D., Maruff, P., Savage, G., Rowe, C. C., 

Masters, C. L., Weiner, M. W., Villemagne, V. L., & Burnham, S. (2021). Using 

Imputation to Provide Harmonized Longitudinal Measures of Cognition Across AIBL 

and ADNI. Scientific reports. https://doi.org/10.1038/s41598-021-02827-6  

18. Arik, S. Ö., & Pfister, T. (2021). Tabnet: Attentive interpretable tabular learning. 

Proceedings of the AAAI Conference on Artificial Intelligence,  

19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, 

Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information 

processing systems, 30.  

20. Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value 

imputation for mixed-type data. Bioinformatics, 28(1), 112-118.  

21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, 

M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning 

in Python. the Journal of machine Learning research, 12, 2825-2830.  

22. Yoon, J., Jordon, J., & Schaar, M. (2018). Gain: Missing data imputation using 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

generative adversarial nets. International conference on machine learning,  

23. Horie, Y., Fazio, S., Westerlund, J. R., Weisgraber, K. H., & Rall, S. C., Jr. (1992). The 

functional characteristics of a human apolipoprotein E variant (cysteine at residue 

142) may explain its association with dominant expression of type III 

hyperlipoproteinemia. J Biol Chem, 267(3), 1962-1968.  

24. Yu, C.-E., Seltman, H., Peskind, E. R., Galloway, N., Zhou, P. X., Rosenthal, E., 

Wijsman, E. M., Tsuang, D. W., Devlin, B., & Schellenberg, G. D. (2007). 

Comprehensive analysis of APOE and selected proximate markers for late-onset 

Alzheimer's disease: Patterns of linkage disequilibrium and disease/marker 

association. Genomics, 89(6), 655-665. 

https://doi.org/https://doi.org/10.1016/j.ygeno.2007.02.002  

25. Ferrari, R., Wang, Y., Vandrovcova, J., Guelfi, S., Witeolar, A., Karch, C. M., Schork, 

A. J., Fan, C. C., Brewer, J. B., & Momeni, P. (2017). Genetic architecture of sporadic 

frontotemporal dementia and overlap with Alzheimer's and Parkinson's diseases. 

Journal of Neurology, Neurosurgery & Psychiatry, 88(2), 152-164.  

26. Lambert, J.-C., Ramirez, A., Grenier-Boley, B., & Bellenguez, C. (2023). Step by step: 

towards a better understanding of the genetic architecture of Alzheimer’s disease. 

Molecular Psychiatry, 28(7), 2716-2727. https://doi.org/10.1038/s41380-023-02076-

1  

27. Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., Boland, 

A., Vronskaya, M., van der Lee, S. J., Amlie-Wolf, A., Bellenguez, C., Frizatti, A., 

Chouraki, V., Martin, E. R., Sleegers, K., Badarinarayan, N., Jakobsdottir, J., 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

Hamilton-Nelson, K. L., Moreno-Grau, S., . . . Lieberman, A. P. (2019). Genetic meta-

analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, 

tau, immunity and lipid processing. Nature Genetics, 51(3), 414-430. 

https://doi.org/10.1038/s41588-019-0358-2  

28. Jansen, I. E., Savage, J. E., Watanabe, K., Bryois, J., Williams, D. M., Steinberg, S., 

Sealock, J., Karlsson, I. K., Hägg, S., Athanasiu, L., Voyle, N., Proitsi, P., Witoelar, A., 

Stringer, S., Aarsland, D., Almdahl, I. S., Andersen, F., Bergh, S., Bettella, F., . . . 

Posthuma, D. (2019). Genome-wide meta-analysis identifies new loci and functional 

pathways influencing Alzheimer’s disease risk. Nature Genetics, 51(3), 404-413. 

https://doi.org/10.1038/s41588-018-0311-9  

29. Schwartzentruber, J., Cooper, S., Liu, J. Z., Barrio-Hernandez, I., Bello, E., Kumasaka, 

N., Young, A. M., Franklin, R. J., Johnson, T., & Estrada, K. (2021). Genome-wide 

meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s 

disease risk genes. Nature Genetics, 53(3), 392-402.  

30. de Rojas, I., Moreno-Grau, S., Tesi, N., Grenier-Boley, B., Andrade, V., Jansen, I. E., 

Pedersen, N. L., Stringa, N., Zettergren, A., Hernández, I., Montrreal, L., Antúnez, C., 

Antonell, A., Tankard, R. M., Bis, J. C., Sims, R., Bellenguez, C., Quintela, I., 

González-Perez, A., . . . contributors, E. (2021). Common variants in Alzheimer’s 

disease and risk stratification by polygenic risk scores. Nature communications, 12(1), 

3417. https://doi.org/10.1038/s41467-021-22491-8  

31. Wightman, D. P., Jansen, I. E., Savage, J. E., Shadrin, A. A., Bahrami, S., Holland, 

D., Rongve, A., Børte, S., Winsvold, B. S., Drange, O. K., Martinsen, A. E., Skogholt, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

A. H., Willer, C., Bråthen, G., Bosnes, I., Nielsen, J. B., Fritsche, L. G., Thomas, L. F., 

Pedersen, L. M., . . . andMe Research, T. (2021). A genome-wide association study 

with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nature 

Genetics, 53(9), 1276-1282. https://doi.org/10.1038/s41588-021-00921-z  

32. Bellenguez, C., Küçükali, F., Jansen, I. E., Kleineidam, L., Moreno-Grau, S., Amin, N., 

Naj, A. C., Campos-Martin, R., Grenier-Boley, B., Andrade, V., Holmans, P. A., Boland, 

A., Damotte, V., van der Lee, S. J., Costa, M. R., Kuulasmaa, T., Yang, Q., de Rojas, 

I., Bis, J. C., . . . Sánchez-Arjona, M. B. (2022). New insights into the genetic etiology 

of Alzheimer’s disease and related dementias. Nature Genetics, 54(4), 412-436. 

https://doi.org/10.1038/s41588-022-01024-z  

33. Lee, S., Wu, M. C., & Lin, X. (2012). Optimal tests for rare variant effects in 

sequencing association studies. Biostatistics, 13(4), 762-775. 

https://doi.org/10.1093/biostatistics/kxs014  

34. Clark, D., Skrobot, O. A., Adebiyi, I., Susce, M. T., de Leon, J., Blakemore, A. F., & 

Arranz, M. J. (2009). Apolipoprotein-E gene variants associated with cardiovascular 

risk factors in antipsychotic recipients. Eur Psychiatry, 24(7), 456-463. 

https://doi.org/10.1016/j.eurpsy.2009.03.003  

35. Bekris, L. M., Lutz, F., & Yu, C.-E. (2012). Functional analysis of APOE locus genetic 

variation implicates regional enhancers in the regulation of both TOMM40 and APOE. 

Journal of human genetics, 57(1), 18-25.  

36. Jeemon, P., Pettigrew, K., Sainsbury, C., Prabhakaran, D., & Padmanabhan, S. 

(2011). Implications of discoveries from genome-wide association studies in current 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

cardiovascular practice. World J Cardiol, 3(7), 230-247. 

https://doi.org/10.4330/wjc.v3.i7.230  

37. Coon, K. D., Myers, A. J., Craig, D. W., Webster, J. A., Pearson, J. V., Lince, D. H., 

Zismann, V. L., Beach, T. G., Leung, D., Bryden, L., Halperin, R. F., Marlowe, L., 

Kaleem, M., Walker, D. G., Ravid, R., Heward, C. B., Rogers, J., Papassotiropoulos, 

A., Reiman, E. M., . . . Stephan, D. A. (2007). A high-density whole-genome 

association study reveals that APOE is the major susceptibility gene for sporadic late-

onset Alzheimer's disease. J Clin Psychiatry, 68(4), 613-618. 

https://doi.org/10.4088/jcp.v68n0419  

38. Seshadri, S., Fitzpatrick, A. L., Ikram, M. A., DeStefano, A. L., Gudnason, V., Boada, 

M., Bis, J. C., Smith, A. V., Carassquillo, M. M., Lambert, J. C., Harold, D., Schrijvers, 

E. M., Ramirez-Lorca, R., Debette, S., Longstreth, W. T., Jr., Janssens, A. C., 

Pankratz, V. S., Dartigues, J. F., Hollingworth, P., . . . Breteler, M. M. (2010). Genome-

wide analysis of genetic loci associated with Alzheimer disease. Jama, 303(18), 1832-

1840. https://doi.org/10.1001/jama.2010.574  

39. Kaushal, R., Woo, D., Pal, P., Haverbusch, M., Xi, H., Moomaw, C., Sekar, P., Kissela, 

B., Kleindorfer, D., Flaherty, M., Sauerbeck, L., Chakraborty, R., Broderick, J., & Deka, 

R. (2007). Subarachnoid hemorrhage: tests of association with apolipoprotein E and 

elastin genes. BMC Med Genet, 8, 49. https://doi.org/10.1186/1471-2350-8-49  

40. Ridker, P. M., Pare, G., Parker, A., Zee, R. Y., Danik, J. S., Buring, J. E., Kwiatkowski, 

D., Cook, N. R., Miletich, J. P., & Chasman, D. I. (2008). Loci related to metabolic-

syndrome pathways including LEPR,HNF1A, IL6R, and GCKR associate with plasma 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

C-reactive protein: the Women's Genome Health Study. Am J Hum Genet, 82(5), 

1185-1192. https://doi.org/10.1016/j.ajhg.2008.03.015 

* from Table 2.34-40 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

 

Figure 1. Overview of the Deep-Block Framework. This figure illustrates the sequential 

stages of the Deep-Block framework used in the analysis of large-scale whole genome 

sequencing (WGS) data for Alzheimer's disease (AD). The process initiates with the 

quality control procedure (QC) of WGS data, ensuring the integrity and reliability of the 

genetic information. Subsequently, the data is organized into Linkage Disequilibrium (LD) 

blocks, indicated by red dotted lines, which reflect the partitioning based on LD 

parameters. The next phase, Automated imputation, is visualized as various modules 

corresponding to different machine learning-based imputation techniques each tasked 
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with estimating and inputting missing genomic data. Following imputation, the TabNet 

encoder's role in decision-making is depicted, using feature transformers and attentive 

transformers to select and prioritize LD blocks that show significant associations with AD. 

The final element of the diagram focuses on the identification of the Phenotype Influence 

Score (PIS) using the TabNet decoder in conjunction with Random Forest metrics. 
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Figure 2. Comparative performance of imputation methods in WGS data. Fig. 2A 

illustrates the accuracy for several imputation methods, which reflects the proportion of 

correctly imputed genotypes to the total number of predictions made. A value closer to 1 

denotes a higher rate of correct imputations. In this analysis, the 1-NN Imputer exhibits 

the highest accuracy, while the Simple Imputer shows the least accuracy, pointing to a 

greater discrepancy in its predictions. Fig. 2B displays the Root Mean Square Error 

(RMSE) across the imputation methods, a metric for quantifying the average errors in 

the predicted values. The lower the RMSE, the more accurate the imputation. Here, the 

MissForest Imputer emerges as the most accurate with the smallest RMSE, while the 

Simple Imputer displays the largest RMSE, indicative of lower accuracy. The results of 

the Topmed Imputer were not as pronounced, falling behind with lower accuracy and a 

higher RMSE than several other imputers. 
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Figure 3. Feature importance and distribution across LD blocks in the ADSP WGS 

Dataset. In Fig. 3A, the analysis determined the feature importance using TabNet for the 

top 100 to 1500 LD blocks. The blue bars represent genetic variants within these 

blocks, where TabNet was assigned a feature importance greater than zero, indicating 

their relevance in phenotype prediction. The gray bars indicate all selected features, 

regardless of their importance score. The steady count of important features across 

increasing block ranks suggests that the most critical variants for phenotype prediction 

were concentrated in the top blocks. Fig 3B visualizes the distribution of LD blocks and 

SNP counts across chromosomes. The bar chart demonstrates that the number of LD 

blocks and SNPs is proportionate to the chromosome length, with larger chromosomes 

containing more blocks.  
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Figure 4. Performance and genomic analysis of Deep-Block framework. (A) Performance 

comparison between different genomic segmentation approaches, showing AUC scores 

based on selected SNPs from the top 1,500 LD blocks. Lines represent smoothed AUC 

scores for Deep-Block with LD-based segmentation (red), TabNet (blue) and Random 

Forest (green) with fixed window approaches. (B) Miami plot comparing genetic 

association statistics between Deep-Block (upper) and Plink (lower). The plots display 
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genome-wide SNP significance, with chromosomes listed numerically on the horizontal 

axis. Color-coding indicates significance ranking: red (top 1-10), blue (11-20), green (21-

30), and gray (31-40), with a side panel listing SNPs in each category. 
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Table 1. Comparison of imputation efficacies of imputation methods. The table shows 

performance metrics for several imputation methods of missing genotypes. The accuracy 

measures the proportion of correctly imputed genotypes, where the 1-NN Imputer ranks 

the highest, suggesting the greatest precision in imputation among the methods. The 

Root Mean Squared Error (RMSE) shows the MissForest Imputer as the most accurate, 

with the smallest values indicating minimal deviation from actual data. R-squared (R2) 

values for the 5-NN, 10-NN, Iterative, and MissForest Imputers indicate that these models 

account for a significant portion of the variance, suggesting a strong correlation with the 

observed data. The Mean Absolute Error (MAE) is lowest for the 1-NN, 5-NN, and 

MissForest Imputers, indicating higher precision. The Normalized Root Mean Squared 

Error (NRMSE) further confirms the MissForest Imputer’s superior performance. Overall, 

the MissForest Imputer exhibits the highest precision in imputation of missing genotypes. 

  

IMPUTER METHOD ACCURACY RMSE R2 MAE NRMSE 

1-NN IMPUTER 0.999875 0.0049 0.9989 0 0.0049 

5-NN IMPUTER 0.999734 0.004 0.9993 0 0.004 

10-NN IMPUTER 0.999626 0.0041 0.9993 0.0001 0.0041 

GAN IMPUTER 0.999606 0.0102 0.9981 0.0002 0.0102 

ITERATIVE IMPUTER 0.999373 0.004 0.9993 0.0001 0.004 

MISSFOREST IMPUTER 0.999359 0.0039 0.9993 0 0.0039 

TOPMED IMPUTER 0.996416 0.0047 0.9081 0.0002 0.0047 

SIMPLE IMPUTER 0.995432 0.0143 0.9965 0.0006 0.0143 
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RANK FEATURE CHR. POSITION VARIATION GENE IMPORTANCE REFERENCE 

1 rs429358 19 44908683 T/C APOE 8.00E-04 22 

2 rs11556505 19 44892886 C/T TOMM40 7.23E-04 24 

3 rs34342646 19 44884872 G/A NECTIN2 6.85E-04 25 

4 rs5117 19 44915532 T/C APOC1 6.85E-04  

5 rs483082 19 44912920 G/T APOC1 6.09E-04 34 

6 rs10414043 19 44912455 G/A APOC1 5.43E-04 35 

7 rs10119 19 44903415 G/A TOMM40 5.11E-04 24 

8 rs71352238 19 44891078 T/C TOMM40 4.76E-04 35 

9 rs6857 19 44888996 C/T NECTIN2 4.63E-04 24 

10 rs59007384 19 44893407 G/A G/T TOMM40 4.57E-04 35 

11 rs111789331 19 44923867 T/A 

 

4.34E-04  

12 rs12721046 19 44917996 G/A APOC1 3.75E-04 36 

13 rs4420638 19 44919688 A/G APOC1 3.61E-04 37 

14 rs283811 19 44885242 A/C A/G NECTIN2 3.37E-04 25 

15 1:13243852 1 13243852 C/T 

 

3.06E-04  

16 rs200986288 20 30185632 A/C A/T 

 

2.87E-04  

17 rs199988716 2 95935492 G/A 

 

2.51E-04  

18 rs202143966 9 63769614 T/C 

 

2.49E-04  

19 rs377656811 22 16427107 C/A C/T 

 

2.45E-04  

20 rs157582 19 44892961 C/T TOMM40 2.37E-04 38 

21 rs78790997 16 33736499 C/G LOC107984083 2.28E-04  

22 rs141490255 1 58630472 G/A 

 

2.27E-04  

23 rs75997270 4 189924739 C/A C/G LOC728339 2.21E-04  

24 rs75627662 19 44910318 C/T 

 

2.20E-04  

25 rs147747785 17 22046134 G/T 

 

2.20E-04  

26 rs1160985 19 44900154 C/T TOMM40 2.18E-04 39 

27 rs2075650 19 44892361 A/G TOMM40 2.16E-04 24 

28 rs202221379 17 22046133 G/T 

 

2.14E-04  

29 rs34404554 19 44892651 C/G TOMM40 2.09E-04 35 

30 rs769449 19 44906744 G/A APOE 2.09E-04 40 
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Table 2. SNPs with highest phenotype influence scores (PIS) associated with AD. This 

table catalogs the top 30 single nucleotide polymorphisms (SNPs) ranked by PIS, derived 

from an extensive examination of 54,949 genetic variants within the top 1500 LD blocks 

using TabNet. The highest-scoring SNPs are predominantly located on chromosome 19, 

related to genes such as APOE, APOC1, NECTIN2, and TOMM40—well-established AD-

associated genes. Additionally, this table includes novel findings, highlighting SNPs and 

genes previously unidentified in AD genetic association studies. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.09.19.24313993doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.19.24313993
http://creativecommons.org/licenses/by-nc-nd/4.0/

