Predicting 30-Day Hospital Readmission in Medicare Patients: Insights from an LSTM Deep Learning Model
Xintao Li, Sibei Liu
doi: https://doi.org/10.1101/2024.09.08.24313212
Xintao Li
1University of Miami, Miami, Florida, United States, Phone: 7862008300
Sibei Liu
2University of Miami, Miami, Florida, United States, Phone: 6142643012
Article usage
Posted September 09, 2024.
Predicting 30-Day Hospital Readmission in Medicare Patients: Insights from an LSTM Deep Learning Model
Xintao Li, Sibei Liu
medRxiv 2024.09.08.24313212; doi: https://doi.org/10.1101/2024.09.08.24313212
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (718)
- Anesthesia (210)
- Cardiovascular Medicine (2997)
- Dermatology (256)
- Emergency Medicine (448)
- Epidemiology (12894)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4691)
- Geriatric Medicine (432)
- Health Economics (739)
- Health Informatics (2982)
- Health Policy (1081)
- Hematology (398)
- HIV/AIDS (942)
- Medical Education (439)
- Medical Ethics (116)
- Nephrology (481)
- Neurology (4480)
- Nursing (239)
- Nutrition (656)
- Oncology (2327)
- Ophthalmology (659)
- Orthopedics (262)
- Otolaryngology (330)
- Pain Medicine (289)
- Palliative Medicine (85)
- Pathology (506)
- Pediatrics (1217)
- Primary Care Research (509)
- Public and Global Health (7069)
- Radiology and Imaging (1570)
- Respiratory Medicine (932)
- Rheumatology (454)
- Sports Medicine (390)
- Surgery (496)
- Toxicology (62)
- Transplantation (214)
- Urology (186)