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Abstract 
 

Background 

Readmissions among Medicare beneficiaries are a major problem for the US healthcare system 
from a perspective of both healthcare operations and patient caregiving outcomes. Our study 
analyzes Medicare hospital readmissions using LSTM networks with feature engineering to 
assess feature contributions. 

Design 

The 21002 senior patient admission data from MIMIC-III clinical database at Beth Israel 
Deaconess Medical Center.is utilized in the study We selected variables from admission-level 
data, inpatient medical history and patient demography. The baseline model is a logistic-
regression model based on the LACE index, and the LSTM model is designed to capture 
temporal dynamic in the data from admission-level and patient-level data. We leveraged Area 
Under the Curve metric, precision and recall to evaluate the model's performance. 

Results 

The LSTM model outperformed the logistic regression baseline, accurately leveraging temporal 
features to predict readmission. The major features were the Charlson Comorbidity Index, 
hospital length of stay, the hospital admissions over the past 6 months or the number of 
medications before discharge, while demographic variables were less impactful 

Limitations 
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The use of a single-center database from the MIMIC-III database limits the generalizability of 
the findings. Additionally, the exclusion for specific chronic conditions and external factors limit 
the model’s ability to capture the complexities of chronic diseases. 

 

Conclusions 

This work suggests that LSTM networks offers a more promising approach to improve Medicare 
patient readmission prediction. It captures temporal interactions in patient databases, enhancing 
current prediction models for healthcare providers. 

Implications 

Adoption of predictive models into clinical practice may be more effective in identifying 
Medicare patients to provide early and targeted interventions to improve patient outcomes.  
 
 

Highlights 
 

• Improved Prediction: Our LSTM model outperforms the logistic regression model with 
LACE index in predicting Medicare patient readmissions. 

• Feature Contribution: Feature engineering ranks variables base on the impact, 
deprioritizing the importance of patient demographic variables, highlighting the 
importance of patients’ chronic diseases in leading hospitalizations and guiding targeted 
interventions to prevent senior hospital readmissions for healthcare providers. 

• Effective Use of Data: Our LSTM model incorporates with time-series data from 
MIMIC-III database to enhance the accuracy of all-cause hospital readmission 
predictions, especially for the high-risk patients. 

• Actionable Insights: The result demonstrates the utilization of deep learning model in 
healthcare decision-making to reduce hospital readmissions for seniors. 
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Text 

Introduction 

Medicare beneficiary readmissions is one of the major challenges in US healthcare system from 
a perspective of both healthcare operations and patient caregiving outcomes1. The Hospital 

Readmissions Reduction Program (HRRP)2 created by the US federal Centers for Medicare ＆ 
Medicaid Services (CMS) serves as a major initiative of penalizing excess 30-day readmissions 
to the hospitals. The prediction and prevention of senior readmission are now becoming major 
goals of improving patient outcomes and reducing spending on medical care. The features related 
to senior readmission provides valuable information of the insight to healthcare provider to 
optimize the medical decision on the prevention. 

There have been various studies focusing on the prediction of hospital readmission, which target 
specific subpopulations to enhance predictive accuracy. For example, a study on diabetic 
patients3 utilized a deep learning model combining wavelet transform and deep forest techniques, 
achieving an AUROC of 0.726. Similarly, research involving heart failure patients employed 
random forests with administrative claims data, resulting in an AUC above 0.800. Having said 
this, even though studies with potentially higher predictive accuracy have been published, the 
LACE index4 remains the best-known model for predicting readmissions for general patient 
populations. Validated through a large-scale study of 1,000,000 Ontarians discharged from 
hospitals, the LACE index incorporates variables such as length of stay, acuity of admission, 
comorbidity, and emergency department use, demonstrating solid predictive performance with a 
C statistic of 0.684. 

Significant limitations persist regarding the variables typically used in readmission prediction. 
While medical comorbidities and pre-existing predictive scores, such as the Charlson 
Comorbidity Index5, are frequently included, basic sociodemographic variables like age and 
gender do not consistently enhance model performance. Also often ignored are variables related 
to interventions during the admission and the post-discharge period6, which are important for 
prediction but hard to include due to data constraints. Another critical gap in current research is 
the interpretability of predictive models. Traditional models frequently fail to leverage the 
sequential and time-series data inherent in electronic health records (EHRs)7,8, potentially 
leading to information loss. Moreover, the deep learning models take decision-making to a 
black-box level, which is challenging to use in a clinical environment where model reliability 
and interpretability are important9–14. 

This study aims to develop a comprehensive deep learning model to address the challenge of 
predicting hospital readmissions within 30 days after discharge, specifically targeting senior 
Medicare patients. Our approach introduces innovative strategies in data extraction and variable 
selection, coupled with a recurrent neural network (RNN) architecture with long short-term 
memory (LSTM) layers that effectively leverages time-series data. To prevent overfitting, we 
deprioritize patient demographic variables, as they offer minimal contribution to model 
performance. Instead, our model integrates admission-level data, such as surgeries, consultations, 
and medications, with patient-level data before and after discharge, including ICD codes and ED 
admission history. The LSTM model's performance is compared with a logistic regression model 
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incorporating the LACE index risk score, allowing us to compare its effectiveness in predicting 
readmissions among Medicare patients. 

 
 
Methods 
Data Collection 

The dataset for this study was sourced from the MIMIC-III database15, which is a comprehensive
single-center resource containing detailed clinical information of patients admitted to critical 
care units at Beth Israel Deaconess Medical Center in Boston, Massachusetts. MIMIC-III 
comprises data for 53,423 unique hospital admissions of adult patients (aged 16 years and above) 
between 2001 and 2012. This data source has been widely used to train various machine learning 
models, such as Random Forest, XGBoost16,17, and contributed to a huge improvement in the 
healthcare research area.  

The data processing flow is showed in Figure 1. Initially, we ensured the integrity of the dataset 
by addressing anomalies such as implausible ages (e.g., >120 years) and missing values. Our 
focus was narrowed to 21,002 Medicare patient admissions from a total of 46,520, utilizing their 
demographic details. Furthermore, we analyzed 6,984 distinct ICD codes to account for the 
patients’ medical histories. This robust dataset serves as the foundation for developing and 
validating our predictive model.  

Figure 1 Flow Chart of Data Preparation, Model Development and Feature Importance Analysis 

Feature Extraction 

We selected variables based on significant tests and evaluations of in-hospital treatments for 
elderly patients, as discussed in Taylor’s research18. The extracted features are grouped into three 
categories: admission-level data, medical history data, and patient demographic data.  

ve, 

e) 
ng 

ir 

 

ee 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 9, 2024. ; https://doi.org/10.1101/2024.09.08.24313212doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.08.24313212
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

  
 

Admission-Level Data 

This data is crucial for modeling hospital readmission risk, capturing the interventions and 
medical treatments received during the hospital stay19,20. Key features include: 

• Emergent Admission: Identifies whether the hospital admission was acute or unplanned. 
• Surgery During Admission: The count of surgical procedures performed during the 

hospital stay. 
• Length of Stay (LOS): The duration of the hospital stay, with longer stays correlating 

with an increased likelihood of readmission21, as adjusted for other. 
• Medications: The number of medications prescribed before discharge. 
• Consultations: Indicates whether thorough medical evaluations, including Echo, ECG, 

and radiology reports, were conducted before discharge. 
• Seasons: Encodes seasonal variations, as temperature fluctuations significantly impact 

hospital admission rates22. 

 

Medical History Data 

Research indicates that 29% of hospitalized patients are readmitted post-discharge in all-cause 
admission studies23. For this study, we extracted: 

• Past 6 Months Hospital Admission: The number of hospital admissions within the past 
six months. 

• Past 6 Months ED Admission: The number of emergency department admissions within 
the past six months. 

• Charlson Comorbidity Index Score: A weighted score evaluating the severity of 
comorbid diseases, a critical factor associated with readmissions5. 

 

Demographic Data 

Given the reduced emphasis on demographic factors, only age and gender—recognized as the 
most significant demographic variables—were included in the model's training. This 
comprehensive feature extraction strategy ensures that our model accounts for crucial factors 
influencing hospital readmissions, particularly for elderly patients, while mitigating overfitting 
by deprioritizing less impactful variables24,25. All variables we used in our model are listed in 
Table 1.  
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Table 1 Patients Characteristics and 30-Day Hospital Readmission 

   Readmission Within 30 Days 
After Discharge 
Number (%) Of Patients 

Characteristic Category/Value Number (%) of 
patients 
n = 20186 

No 
n = 18891 
(93.8) 

Yes 
n = 1295 (6.2) 

Admission-Level Data     
Emergent Admission Yes 16986 (84.1) 15858 (83.9) 1128 (87.1) 
 No 3200 (15.9) 3033 (16.1) 167 (12.9) 
Surgery During Admission Yes 454 (2.2) 419 (2.2) 35 (2.7) 
 No 19732 (97.8) 18472 (97.8) 1260 (97.3) 
Length Of Stay (Los) Median (IQR) 7 (4-12) 7 (4-12) 8 (5-14) 
Medications Median (IQR) 39 (26-55) 39 (25-55) 40 (28-56) 
Consultations Median (IQR) 17 (9-32) 16 (9-31) 19 (10-41) 
Seasons Spring 4908 (24.3) 4606 (24.4) 302 (23.3) 
 Summer 5198 (25.8) 4882 (25.8) 316 (24.4) 
 Autumn 5145 (25.5) 4788 (25.3) 357 (27.6) 
 Winter 4935 (24.4) 4615 (24.4) 320 (24.7) 
Medical History Data     
Past 6 Months Hospital 
Admission 

Median (IQR) 0 (0-0) 0 (0-0) 0 (0-1) 

 >0 2605 (12.9) 2273 (12.0) 332 (25.6) 
Past 6 Months Ed Admission Median (IQR) 1 (0-1) 1 (0-1) 1 (0-1) 
 >0 11932 (59.1) 11055 (58.5) 877 (67.7) 
Charlson Comorbidity Index 
Score 

Median (IQR) 3 (1-6) 3 (1-6) 6 (3-10) 

Demographic Data     
Gender Female 9495 (47.0) 8935 (47.3) 560 (43.2) 
 Male 10691 (53.0) 9956 (52.7) 735 (56.8) 
Age Median (IQR) 77 (71-82) 77 (71-82) 77 (70-82) 
 
 
Model Development  

Baseline Model: LACE Index 
To get a robust baseline model for senior readmission prediction, we developed a 
multidimension logistic regression model with LACE index components4. Logistic regression is 
the statistical methods for that models the binary outcomes of one or more independent variables. 
The logistic regression model is of the form as: 

 

logit��� � ��� � ���� � ���� �	� ���� 
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In this equation, � represents the probability of readmission, �� is the intercept, and ��  are the 
coefficients corresponding to the predictor variables �� . The LACE index components—Length 
of stay (L), Acuity of the admission (A), Comorbidities (C), and Emergency department visits 
(E)—serve as the independent variables in our model. The definition of LACE index is listed in 
Table 2.  
 
To enhance the interpretability of the model, we adopted the approach suggested by Sullivan et 
al.26 to transform the logistic regression model into a risk index. This step involves converting a 
model’s regression coefficients into point scores by taking each coefficient and dividing by the 
smallest absolute value of any coefficient in the model, and then rounding the result off to the 
nearest whole number. The overall risk score for an individual patient is the total of those points. 
The LACE index components consist of Length of stay (L), Acuity of the admission (A), 
Comorbidities (C), and Emergency department visits (E), which serve as the independent 
variables in our model. 
 
The probability of readmission is subsequently estimated using the formula: 
 

Probability = 
1

1 � ���intercept+�·total score	
 

 

where � is the coefficient in the regression model with the smallest absolute value. 

The logistic regression model was trained and validated using a 70-30 train-test split, allowing us to 
provide a benchmark for more complex (and hopefully better) models that could be trained by using deep 
learning techniques. 

Table 2 Components and Scoring of the LACE Index for 30-Day Readmission Risk 

LACE Component Criteria Score 
Length Of Stay (L) < 1 0 
 1 1 
 2 2 
 3 3 
 4-6 4 
 7-13 6 
 >14 7 
Acuity of Admission (A) Yes 3 
Charlson Comorbidity Index (C) 0 0 
 1 1 
 2 2 
 3 3 
   
 >=4 5 
Visits To Emergency Department 
(E) In Previous 6 Months 

0 0 

 1 1 
 2 2 
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 3 3 
 >=4 4 

 

Long short-term memory (LSTM) model 
We utilized Long Short-Term Memory (LSTM) networks to build our predictive model on time 
series data27. The clinical data from patients are usually with irregular intervals and missing-
value imputation (end-diastole, end-systole, COK time intervals) that requires special handling28. 
The LSTM networks were particularly a good fit for temporal dependencies and patterns29 . 
LSTM networks is a specialized form of Recurrent Neural Networks (RNNs) that designed to 
manage long-term dependencies in sequential data(). The unique architecture composed of a 
series of gates: forget, input, and output gates, which regulate the information flow and ensure 
that relevant details are retained over extended periods28. The LSTM is of the form as 
 

�
 � 
��� · ��
��, �
� � ��� 

�
 � 
��� · ��
��, �
� � ��� 

�
� � tanh��
 · ��
��, �
� � �
� 

�
 � �
 � �
�� � �
 � �
�  

�
 � 
��� · ��
��, �
� � ��� 

 

Here, �
 is the forget gate, �
 is the input gate, �
�  is the candidate cell state, �
 is the cell state, �
 
is the output gate, and �
 is the hidden state. The sigmoid function (
) and hyperbolic tangent 
function (tanh) introduce non-linearity to the model30. 

Our LSTM model architecture consists of a bidirectional LSTM layer and an additional LSTM 
layer, allowing for the model to adapt to patterns in both forwards and backwards directions in 
the time-series data28. Because temporal dynamics can be complex in many situations, dual-layer 
LSTMs are better at accommodating nonlinear interactions between how future and past events 
influence each other, especially when we want to rely on how well our model is able to predict 
several future steps. The decimal forecast was assigned to the single output neuron in a dense 
decision layer, activated by a sigmoid function, which is used for binary classification31. The 
sigmoid function that maps input values between 0 and 1 as: 

���� 	 1
1 � ���  
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Figure 2 Long Short-Term Memory Neural Networks 

 

 

Figure 3 Long Short-Term Memory Flow Chart 

Figure 2 and Figure 3 illustrate how LSTM does work on top of RNN. Figure 2 is a sequential 
model of LSTM. The sequential model can work on each time step until it reaches the end of the 
data. Every step of the process has input that can influence the short term and long-term memory,
while forget, input, and output gates to regulate the information flow32,33. The interplay between 
these gates ensures that the LSTM can selectively remember and utilize relevant information 
over long sequences. This is crucial for tasks of time-series data or sequential information 
processing of any form34,35. Figure 3 exhibits how in each time step, it depends on the others, so 

 

 

e 
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this helps the network to capture some complicated temporal pattern in the sequence data. By 
remembering and update the long-term memory state of the dependency through time flow, the 
LSTM can avoid the issue of vanishing gradient, which occurs in a traditional RNN36. Thus, 
LSTM provides a robust way to manage the long-term dependency in the input data. 
 
We trained our model with 64 epochs to achieve the highest AUC. To optimize the model, we 
used the Adam optimizer with a learning rate of 0.001, selected through hyperparameter tuning37. 
The Adam optimizer works well on datasets with sparse gradients and noisy data like our clinical 
dataset. We used binary cross-entropy as the loss function to measure the discrepancy between 
the predicted and actual values: 


��, ��� 	 � 1
�����log����� � �1 � ���log(1-���)�

�

���

 

 

where � is the true label, �� is the predicted probability, and � is the number of samples. 
Additionally, we used the Area Under the Curve (AUC) metric to evaluate the model's 
performance. 

We utilized layer wise dropout on the deep learning model to avoid the common overfitting 
problem in deep learning models. The dropout rate is 0.4.38. Finally, since the challenge does not 
require a fixed number of epochs for training, we utilized the Early Stopping method, it keeps 
track of the validation loss over training iterations, and halts training if the validation loss does 
not improve after following a fixed number of epochs. 

The LSTM model was trained using a 70-30 train-test split for robust evaluation. By comparing 
the performance of the LSTM model with the logistic regression baseline, we aimed to show the 
advantages of incorporating temporal dynamics into predictive modeling for healthcare 
application.  

 
Evaluation 

To evaluate the performance of our models, we utilized several key metrics. The Area Under the 
Receiver Operating Characteristic Curve (AUC-ROC) serves as the primary measure of 
predictive accuracy. The AUC-ROC is a widely recognized metric that evaluates a model's 
ability to distinguish between positive (readmitted) and negative (not readmitted) classes. A 
higher AUC indicates superior model performance, suggesting that the model is better at 
correctly classifying patients. 

 

In addition to AUC-ROC, we focused on precision and recall within the "highest risk decile" of 
patients. This involved ranking patients according to their predicted risk scores and analyzing the 
top 10%—those deemed most at risk39–41. Precision in this context reflects the proportion of 
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patients identified as high-risk who were actually readmitted, providing a measure of the model's 
accuracy in predicting true positives. Recall, conversely, measures the proportion of actual 
readmissions captured within this high-risk group, indicating the model's effectiveness in 
identifying the majority of true readmissions. 

Precision is defined as: 

Precision = 
True Positives

True Positives+False Positives
 

Recall is defined as: 

Recall= 
True Positives

True Positives+False Negatives
 

These metrics are critical for assessing the clinical utility of our models. High precision ensures 
that most patients flagged as high-risk are indeed readmitted, reducing unnecessary interventions. 
High recall, on the other hand, ensures that the model successfully identifies a substantial 
proportion of all actual readmissions, thereby minimizing missed cases41. 

To ensure a robust and comprehensive evaluation, these metrics were averaged over 20 different 
data splits42. For each split, the data was divided into training (60%), validation (15%), and 
testing (25%) sets, with random assignments to reduce the potential for overfitting. This 
methodology provides a thorough comparison of model performance across different samples, 
ensuring that the evaluation is both reliable and generalizable. 

 
 
 
 
 
Results 
 
Baseline Model 

The LACE index model, employing multivariable logistic regression, achieved an AUC of 0.608 
(95% CI: 0.602 - 0.614). This performance is notably lower than the AUC of 0.85 reported when 
the LACE index is applied to a general population43. For high-risk patient readmission prediction, 
the model attained a precision of 0.168 (95% CI: 0.161 - 0.175) and a recall of 0.261 (95% CI: 
0.252 - 0.270). This indicates that, on average, 16.8% of the patients predicted to be in the 
highest risk decile were indeed readmitted, while the model captured only 26.1% of the actual 
readmissions within this high-risk group. 

Among the variables selected for this logistic regression model, several factors emerged as 
significant predictors of hospital readmission. Length of stay (OR 1.015, 95% CI: 1.009 - 1.018) 
was found to be a significant predictor, indicating that for each additional day spent in the 
hospital, the odds of readmission increase by approximately 1.5%. The Charlson comorbidity 
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score (OR 1.127, 95% CI: 1.119 - 1.135) also significantly increased the likelihood of 
readmission, suggesting that patients with higher comorbidity burdens are at a greater risk. 
Additionally, past admissions within six months (OR 1.199, 95% CI: 1.054 - 1.324) were 
associated with a higher probability of readmission, underscoring the impact of recent healthcare 
utilization. Conversely, being female (PL_Sex) was associated with a reduced risk of 
readmission (OR 0.802, 95% CI: 0.731 - 0.867), indicating that females are at a higher risk 
compared to females. These findings highlight the importance of targeted interventions focusing 
on these significant predictors to reduce hospital readmissions. 

 

LSTM Model 

The LSTM model demonstrated notable performance improvements over the baseline logistic 
regression model, achieving an Average AUC of 0.700 (95% CI: 0.693 - 0.706), compared to the 
logistic regression's Average AUC of 0.608 (95% CI: 0.602 - 0.614). Using precision and recall 
to evaluate the model performance in terms of top 10% high-risk admission patients, LSTM 
model achieved precision of 0.355 (95% CI: 0.319 – 0.391) and recall of 0.418 (95% CI: 0.389 – 
0.448), a significant improvement from the baseline model. 

 

Figure 4 AUC Comparation of Logistic Regression and LSTM 

 
 

Features Importance  
We utilized permutation importance to further understand the contributions of different features 
in predicting hospital readmissions within 30 days as shown in Figure 5. Permutation importance 
measures the decrease in model performance when a single feature’s values are randomly 
shuffled, effectively breaking the relationship between that feature and the target variable. This 
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method provides an intuitive metric for assessing the impact of each feature on the model's
predictions. 

Our analysis reveals that the Charlson Comorbidity Index (CCI) score is the most significant 
predictor, with an importance value of 0.1424. This finding underscores the substantial influence 
of chronic conditions on readmission risk. The second most important feature is the length of 
hospital stay, with an importance value of 0.0313, highlighting the critical role of prolonged 
hospitalizations in predicting future readmissions. 

The number of past six months' hospital admissions also emerges as a key predictor, with an 
importance value of 0.0298. This feature indicates that patients with frequent recent 
hospitalizations are at a higher risk of being readmitted. Additionally, past emergency 
department admissions contribute significantly, with an importance value of 0.0091. 

Interestingly, some features exhibit negative importance values, suggesting they may have a 
negligible or potentially misleading impact on the model's predictions. For instance, age has an 
importance value of -0.0040, and admissions for surgery have an importance value of -0.0007. 
These negative values indicate that these features, when permuted, might slightly improve the 
model's performance, thus questioning their relevance. 

Other features, such as season of admission and consultations, show minimal importance values 
of 0.0010 and 0.0017, respectively, indicating a relatively low impact on the prediction of 
readmissions. Furthermore, the number of admissions related to medications has an almost 
negligible importance value of -0.0003. 

Figure 5 Permutation Analysis 

l's 

ce 
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Model Adjustment 
Recognizing this, we undertook feature selection and engineering to refine our model further. 
The results are listed in Table 3. 

In our feature selection process, removing the Age feature alone resulted in an Average AUC of 
0.706 (95% CI: 0.701 - 0.711), maintaining precision but slightly reducing recall. Removing the 
Surgery feature led to a decrease in performance with an Average AUC of 0.695 (95% CI: 0.690 
- 0.700). Combining the removal of both features yielded an Average AUC of 0.699 (95% CI: 
0.694 - 0.705), indicating the detrimental impact of excluding these variables together. 

Next, we explored feature engineering by categorizing patient ages44 into ranges: 65-74, 74-85, 
and 85+. This categorization improved the model's Average AUC to 0.703 (95% CI: 0.697 - 
0.710), with precision remaining stable and a slight increase in recall. Combining this age 
categorization with the removal of the Surgery feature resulted in a diminished performance, 
with an Average AUC of 0.694 (95% CI: 0.690 - 0.699). 

Ultimately, our best-performing LSTM model excluded the Age feature but retained the Surgery 
variable in its original form, achieving an optimal balance between predictive accuracy and recall. 
These findings highlight the nuanced impacts of feature selection and engineering on model 
performance, emphasizing the importance of retaining critical variables for robust predictions. 

Table 3 LSTM Model Adjustment 

Model Features AUC 
(95% CI) 

Precision 
(95% CI) 

Recall 
(95% CI) 

 
(a) Baseline – Logistic Regression 

 
Logistic 
Regression 

Full features 0.608 
(0.602 - 0.614) 

0.168 
(0.161 - 0.175) 

0.261 
(0.252 - 0.270) 

Logistic 
Regression 

Full features exclude Age 0.609 
(0.603 - 0.616) 

0.170  
(0.164 - 0.176) 

0.261  
(0.251 - 0.272) 

Logistic 
Regression 

Full features exclude Age and 
Surgery 

0.611  
(0.605 - 0.618) 

0.176  
(0.167 - 0.185) 

0.274  
(0.265 - 0.282) 

Logistic 
Regression 

Full features exclude Surgery 0.611  
(0.604 - 0.618) 

0.162  
(0.156 - 0.169) 

0.258  
(0.248 - 0.267) 

Logistic 
Regression 

Full features with categorize 
Age 

0.614  
(0.605 - 0.624) 

0.169  
(0.162 - 0.175) 

0.256  
(0.246 - 0.265) 

Logistic 
Regression 

Full features exclude Surgery 
with categorized Age 

0.612  
(0.606 - 0.618) 

0.163  
(0.156 - 0.171) 

0.256  
(0.248 - 0.264) 

 
(b) Features Selection 

 
LSTM Full features 0.700  

(0.693 - 0.706) 
0.355  

(0.319 - 0.391) 
0.418  

(0.389 - 0.448) 
LSTM 
 

Full features exclude Age 0.706  
(0.701 - 0.711) 

0.357  
(0.321 - 0.393) 

0.419  
(0.390 - 0.449) 

LSTM Full features exclude Age and 0.699  0.342  0.399  
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 Surgery (0.694 - 0.705) (0.301 - 0.383) (0.334 - 0.464) 

LSTM 
 

Full features exclude Surgery 0.695  
(0.690 - 0.700) 

0.345  
(0.305 - 0.385) 

0.403  
(0.356 - 0.450) 

LSTM 
 

Full features with categorize 
Age 

0.703  
(0.697 - 0.710) 

0.343  
(0.312 - 0.374) 

0.411  
(0.390 - 0.446) 

LSTM 
 

Full features exclude Surgery 
with categorized Age 

0.694  
(0.690 - 0.699) 

0.348  
(0.310 - 0.386) 

0.416  
(0.375 - 0.457) 

 
 
 
Discussion 

In-Depth Analysis of Variable Contributions to Readmission Risk: Insights from SHAP 

To better understand the impact of each predictor on hospital readmission, we used SHapley 
Additive exPlanations (SHAP), which is an approach based on cooperative game theory that 
assigns precise importance values to features in our LSTM model45. It is a quantitative measure 
of the relative influence of each variable on the model’s prediction. The analysis revealed that 
the Charlson Comorbidity Index (CCI) is the most significant predictor of 30-day hospital 
readmissions. SHAP values clearly indicate that higher CCI scores are strongly associated with a 
higher likelihood of readmission. This finding is consistent with the established clinical 
understanding that patients with multiple comorbidities are at greater risk of adverse outcomes, 
including readmission. The second-most significant variable after CCI, was hospital length of 
stay, which could account for the probability of readmissions, likely as a result of the severity of 
the index admission or complications that delayed recovery. 

 

Contrary to intuition, our analysis also showed an inverse correlation – the more medications and 
consultations people take in the initial hospital admission, the lower their risk of readmission. 
This suggests that better care during the initial hospitalization – including more intensive 
medical investigations and prophylactic drug treatments – might reduce the risk of patients going 
home and returning to hospital. 

 

To thoroughly understand the impact of various predictors on hospital readmissions, our analysis 
employed SHapley Additive exPlanations (SHAP), a robust method rooted in cooperative game 
theory. SHAP assigns precise importance values to each feature in our LSTM model, allowing us 
to quantitatively assess the influence of different variables on the model's predictions. The details 
of SHAP results are shown in the Figure 6.  
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Another key finding is the gender disparity in readmission rates, with female patients exhibiting 
a higher propensity for readmission than their male counterparts. This may be due to a variety of 
factors, including physiological differences, comorbidity profiles, or access to post-discharge 
care, though further investigation would be required to pinpoint the exact causes. 

The model also found that one-time or frequent prior visits to emergency departments over the 
past six months were moderate predictors of readmission risk, which accords with clinical 
observations that patients with a history of acute admissions are more likely to experience acute 
readmission events. 
 
 Conversely, other inpatient surgical interventions and seasonal variations demonstrated minimal 
impact on the readmission prediction, this suggests that while these factors represent only 
incidental aspects of clinical care. 

Figure 6 SHAP Force Plot 

 

Clinical Validation of Model Predictors 
To enrich our analysis of the LSTM model's clinical relevance, we reference pertinent studies 
that affirm the significance of key model predictors46. The Charlson Comorbidity Index (CCI) 
emerges as a pivotal predictor, corroborated by Dongmei’s research47, which delineates a 
pronounced relationship between high CCI scores and increased short-term readmission risks in 
heart failure patients, using multivariable logistic regression to pinpoint a risk saturation effect at 
a CCI score of 2.97 (OR, 2.66; 95% CI, 1.566–4.537). Marco Canepa's study similarly 
underscores a direct correlation between elevated CCI scores and heightened readmission in 
elderly patients48. 

Jean-Sebastien’s analysis extends the narrative by highlighting the impact of length of stay (LOS
on readmission49. Examining 91,723 patients, the study finds that a longer LOS, averaging 6.87 
days among readmitted patients versus 5.37 days generally, significantly correlates with 
increased readmission risk, thus supporting our model's emphasis on LOS as a substantial 
predictor.  

Prior hospitalizations, especially via emergency departments, and hospitalizations conducted via 
emergency departments over the past 6 months were independently increased the possibility of 
unplanned rehospitalization with 30 days of discharge50. These factors may account for the total 
burden of illness, functional status, and social environment4,51–54, causing more frequent 
rehospitalization. 

Conversely, the inverse relationship our model identifies between discharge medication counts 
and readmission likelihood finds empirical backing in Picker’s research, which demonstrates that 
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a higher number of discharge medications is associated with decreased readmission rates, with 
statistical significance (P < 0.001)55.The protective role of consultations is evidenced in a study 
by David, showing that pharmacist-led medication reconciliations at discharge reduce the 7-day 
readmission rate significantly from 7.6% to 5.8% in high-risk patients, bolstering our model's 
findings56. 

Gender-specific predictions by our model are supported by research noting physiological 
differences that influence clinical outcomes57,58. Studies highlight that women, with their 
anatomically smaller body sizes and arteries, are more prone to procedural complications, which 
is reflected in higher complication rates post-interventions59. 

The removal of the age variable in our LSTM model adjustment resulted in an improved AUC, 
precision, and recall, suggesting that age may not be a critical factor in predicting readmission 
for patients over 65. This observation is supported by research indicating that the impact of age 
on readmission rates stabilizes beyond this age threshold. Jay's study reveals that for patients 
aged over 65, the odds ratio for readmission does not vary significantly with age, highlighting 
the diminished influence of age on readmission likelihood in this demographic60. This finding 
aligns with the broader clinical understanding that factors other than age might be more 
predictive of readmission risks in the elderly, guiding more targeted interventions to prevent 
hospital readmissions.  

These studies not only validate the predictive accuracy of our LSTM model but also enrich its 
clinical interpretability. By anchoring our model's outputs in robust clinical research, we ensure 
that the insights it provides are not only scientifically valid but also practically applicable in 
enhancing patient care and management strategies within healthcare systems. This synthesis of 
machine learning efficiency and empirical clinical evidence paves the way for targeted 
interventions that could substantially mitigate readmission rates and improve overall healthcare 
outcomes. 

Limitations 

The limitations of our study are twofold. First, the MIMIC-III database is limited in scope of its 
single center as it may not represent the wider Medicare population. Although 67.3 million were 
enrolled in Medicare as of 31 July 2024, we analyzed the data on 21,002 patients. Our particular 
study might skew the geographical biases and fail to highlight the disparities in hospital 
readmissions risks depending on geographic variations and racial diversity. In future studies, we 
plan to overcome these drawbacks by utilizing larger multi-centers61 that have a more 
representative population and add additional demographic factors to our predictive model.  

A second limitation was the study’s focus on all-cause hospital readmissions without accounting 
for specific patients’ chronic disease histories. Although we used the Charlson Comorbidity 
Index (CCI) to account for comorbidities, this surrogate measure likely fails to adequately 
capture what we deem to be the ‘chronic’ in older adults with chronic disease. Examples include 
the multiplicity and complexity involved in the management of a person’s heart failure, diabetes, 
or some other chronic condition (acknowledging that our heart failure model does better). Future 
studies could focus on specific chronic diseases to enhance interpretability and inform specific 
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clinical populations, such as the age 65-plus Medicare population. Also, NLP technique can be 
further utilized to EHR data to provide more valuable features for the prediction62–64. 

Moreover, this study does not consider external factors which can affect hospital readmission: 
the external environment or conditions within it such as quality of surrounding areas, distance 
from the hospital, and patient health behaviors such as smoking or obesity, which can be 
digitalized from more kinds of data source65 . These are vital external factors for seniors and can 
shed more light on the internal risks of rehospitalization. A possible direction for further research 
could be to incorporate these external factors and discover their effect on the readmission 
probabilities while applying the same LSTM deep learning approach to further improve the 
predictive power and applicability of the model. 

 
Conclusion  
This study underscores the significance of predictive modeling in addressing the challenge of 30-
day hospital readmissions among senior Medicare patients. By leveraging a Long Short-Term 
Memory (LSTM) model, we have demonstrated that incorporating time-series data and focusing 
on admission-level variables enhances the prediction of readmission risk, surpassing traditional 
logistic regression models that rely on the LACE index. 
  
The findings highlight that the Charlson Comorbidity Index (CCI) and length of hospital stay are 
the most influential factors in predicting readmissions. Our LSTM model's ability to capture 
temporal dependencies allows it to provide a more nuanced understanding of these predictors 
compared to baseline models. Moreover, the model’s precision and recall metrics in identifying 
high-risk patients indicate its potential utility in clinical settings for targeted interventions. 
  
However, the study also reveals limitations related to the data source and scope. The use of a 
single-center database and the focus on all-cause readmissions may limit the generalizability of 
the findings. Future research should explore the application of this model across more diverse 
and larger datasets, as well as its effectiveness in predicting readmissions related to specific 
chronic conditions.  
  
Overall, this research contributes to the ongoing efforts to reduce hospital readmissions by 
providing a robust and clinically relevant predictive model. The insights gained from this study 
can inform healthcare providers and policymakers in developing strategies to improve patient 
outcomes and reduce healthcare costs. As the healthcare landscape continues to evolve, the 
integration of advanced machine learning models like the one presented here will be crucial in 
driving forward data-driven, patient-centered care. 
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