Abstract
Typhoid fever is a systemic infection caused by Salmonella enterica serovar Typhi (S. Typhi) invasion from the gut lumen. Transmission between people occurs through ingestion of contaminated food and water, particularly in settings with poor water and sanitation infrastructure, resulting in over 10 million illnesses annually. As the pathogen invades via the gastrointestinal tract, it is plausible that the gut microbiome may influence the outcome of S. Typhi exposure. There is some evidence that bacteria producing short-chain fatty acids (SCFAs) may create an environment unfavourable to invasive Salmonella, but data from humans is limited.
To investigate the association between gut microbiome and typhoid fever, we analysed samples collected from three all-age cohorts enrolled in a prospective surveillance study conducted across three settings where typhoid fever is endemic (Dhaka, Bangladesh; Blantyre, Malawi; and Kathmandu, Nepal). Cohorts consisted of acute typhoid fever patients (n=92), asymptomatic household contacts of typhoid fever patients (representing individuals who were likely exposed to S. Typhi but did not develop disease, n=97), and asymptomatic serosurvey participants with high Vi antibody titres (representing individuals who were exposed to S. Typhi and may be carriers, n=69). The stool microbiomes of each cohort were characterised using shotgun metagenomics, and bacterial diversity, composition, and function were compared.
We identified 4 bacterial species that were significantly lower in abundance in typhoid fever patients compared with household contacts (i.e. probably exposed), in two of the three participant populations (Bangladesh and Malawi). These bacteria may represent taxa that provide protection against development of clinical infection upon exposure to S. Typhi, and include the inflammation-associated species Prevotella copri clade A and Haemophilus parainfluenzae. Our functional analysis identified 28 specific metabolic gene clusters (MGCs) negatively associated with typhoid fever in Bangladesh and Malawi, including seven MGCs involved in SCFA metabolism. The putative protection provided by microbiome SCFA metabolism was supported by data from a controlled human infection model conducted in a UK population, in which participants who did not develop typhoid fever following ingestion of S. Typhi had higher abundance of a putative SCFA-metabolising MGC (q-value = 0.22).
This study identified the same protective associations between taxonomic and functional microbiota characteristics and non-susceptibility to typhoid fever across multiple human populations. Future research should explore the potential functional role of SCFAs and inflammation-associated bacteria in resistance to S. Typhi and other enteric infections.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
KA, SK, NRT, OS were funded by the Wellcome Trust (220540/Z/20/A). For the purpose of open access, the authors have applied a CC-BY public copyright licence to any author-accepted manuscript version arising from this submission. This research was funded by the Wellcome Trust (STRATAA grant number 106158/Z/14/Z, and core funding to the Wellcome Sanger Institute, grant number 206194) and the Bill & Melinda Gates Foundation (grant number OPP1141321). MAG, ACC, and PMA were supported by a research professorship (NIHR300039) from the National Institute for Health and Care Research, UK Department of Health and Social Care. GD is supported by the Health@InnoHK, Innovation Technology Commission Funding. MMG is supported by the NIHR Imperial Biomedical Research Centre and the Wellcome Trust (224029/Z/21/Z).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethical approval was granted by the Oxford Tropical Research Ethics Committee (University of Oxford, Oxford, UK).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Final polish of the manuscript before submission to journal. Slight modification of author list to represent each site that contributed more equally.
Data availability
The code used in the analysis of these data is available on github - https://github.com/flashton2003/STRATAA_metagenomics. Sequencing data for this project are available at the European Nucleotide Archive, project accessions PRJEB14050 and PRJEB22175.