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Abstract 47 

Typhoid fever is a systemic infection caused by Salmonella enterica serovar Typhi (S. Typhi) 48 

invasion from the gut lumen. Transmission between people occurs through ingestion of 49 

contaminated food and water, particularly in settings with poor water and sanitation 50 

infrastructure, resulting in over 10 million illnesses annually. As the pathogen invades via the 51 

gastrointestinal tract, it is plausible that the gut microbiome may influence the outcome of S. 52 

Typhi exposure. There is some evidence that bacteria producing short-chain fatty acids 53 

(SCFAs) may create an environment unfavourable to invasive Salmonella, but data from 54 

humans is limited. 55 

 56 

To investigate the association between gut microbiome and typhoid fever, we analysed samples 57 

collected from three all-age cohorts enrolled in a prospective surveillance study conducted 58 

across three settings where typhoid fever is endemic (Dhaka, Bangladesh; Blantyre, Malawi; 59 

and Kathmandu, Nepal). Cohorts consisted of acute typhoid fever patients (n=92), 60 

asymptomatic household contacts of typhoid fever patients (representing individuals who were 61 

likely exposed to S. Typhi but did not develop disease, n=97), and asymptomatic serosurvey 62 

participants with high Vi antibody titres (representing individuals who were exposed to S. Typhi 63 

and may be carriers, n=69). The stool microbiomes of each cohort were characterised using 64 

shotgun metagenomics, and bacterial diversity, composition, and function were compared. 65 

 66 

We identified 4 bacterial species that were significantly lower in abundance in typhoid fever 67 

patients compared with household contacts (i.e. probably exposed), in two of the three 68 

participant populations (Bangladesh and Malawi). These bacteria may represent taxa that 69 

provide protection against development of clinical infection upon exposure to S. Typhi, and 70 

include the inflammation-associated species Prevotella copri clade A and Haemophilus 71 

parainfluenzae. Our functional analysis identified 28 specific metabolic gene clusters (MGCs) 72 

negatively associated with typhoid fever in Bangladesh and Malawi, including seven MGCs 73 

involved in SCFA metabolism. The putative protection provided by microbiome SCFA 74 

metabolism was supported by data from a controlled human infection model conducted in a UK 75 

population, in which participants who did not develop typhoid fever following ingestion of S. 76 

Typhi had higher abundance of a putative SCFA-metabolising MGC (q-value = 0.22).  77 

 78 
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This study identified the same protective associations between taxonomic and functional 79 

microbiota characteristics and non-susceptibility to typhoid fever across multiple human 80 

populations. Future research should explore the potential functional role of SCFAs and 81 

inflammation-associated bacteria in resistance to S. Typhi and other enteric infections. 82 
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Introduction 83 

Typhoid fever, caused by invasive Salmonella enterica serovar Typhi (S. Typhi) infection, 84 

causes an estimated 10.9 million illnesses and 116,800 deaths per year disproportionately 85 

affecting people in South and Southeast Asia and sub-Saharan Africa (Stanaway et al. 2019; 86 

Meiring et al. 2023). The introduction of typhoid conjugate vaccines is expected to decrease the 87 

number of typhoid fever cases in these settings, along with improvements in water, sanitation 88 

and hygiene (WASH). However, the large burden of disease, the role of asymptomatic gall 89 

bladder carriage as a source of infection, and the fact that typhoid fever often impacts the most 90 

impoverished and marginalised communities, means that eradicating this infection will be 91 

difficult (Meiring et al. 2021; Patel et al. 2021; Steele et al. 2016). 92 

 93 

The human gut microbiota, a complex ecosystem comprising trillions of microbial cells, plays an 94 

indispensable role in shaping our overall health and susceptibility to diseases (Shreiner, Kao, 95 

and Young 2015). This densely populated microbial environment is not only pivotal in the 96 

processes of digestion and nutrient absorption but also intimately connected to our immune 97 

system, determining its responses to various stimuli (Belkaid and Hand 2014). As the nexus 98 

between the external environment and our internal physiology, the gut microbiome is a critical 99 

determinant of the outcome of gastrointestinal infectious disease exposures, via a phenomenon 100 

termed 'colonization resistance' (Stecher et al. 2007; Winter et al. 2010; Lopez et al. 2016; 101 

Libertucci and Young 2019). This protective effect arises from multifaceted interactions: direct 102 

competition for nutrients, production of antimicrobial compounds, and modulation of the host's 103 

innate and adaptive immune responses (Leshem, Liwinski, and Elinav 2020). Some of the 104 

earliest work on colonisation resistance showed that suppressing the gut microbiome of mice 105 

with antibiotics dramatically reduced the dose of Salmonella required to establish infection 106 

(Bohnhoff, Drake, and Miller 1954). Recent work has made great strides in understanding 107 

mechanisms by which Salmonella and the microbiome interact (Rogers, Tsolis, and Bäumler 108 

2021). Short chain fatty acids (SCFAs) are important in interaction between the microbiota and 109 

Salmonella, reducing the availability of oxygen in the gut (Byndloss et al. 2017) and acidifying 110 

the cytosol of Salmonella, inhibiting growth (Jacobson et al. 2018). Despite well-established 111 

knowledge about the gut microbiome's function in preventing Salmonella infections and the 112 

established faecal-oral transmission pathway of S. Typhi, the precise influence of the gut 113 

microbiome on the outcome of S. Typhi exposure remains underexplored, complicated by the 114 

human host-specificity of S. Typhi. 115 
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 116 

While insights from animal studies of invasive infection with other S. enterica serovars can be 117 

informative, detailed studies of the interaction between the human gut microbiome and S. Typhi 118 

specifically are lacking. Controlled human infection model (CHIM) studies provide an 119 

experimental system in which to interrogate infections in humans, complementing observational 120 

studies of natural infections (Waddington et al. 2014; Gibani et al. 2020). Previous data 121 

generated from this model revealed an association between typhoid fever susceptibility and the 122 

presence of Methanobrevibacter in the gut microbiome (Zhang et al. 2018). Analysing natural 123 

infections, Haak et al. determined that typhoid fever patients in Bangladesh had reduced 124 

microbial diversity and fewer SCFA producers than healthy counterparts (Haak et al. 2020). 125 

Better understanding of the causal relationships between the gut microbiome and typhoid fever 126 

could lead to novel preventative mechanisms and diagnostics, as well as an improved 127 

understanding of colonisation resistance to bacteria causing serious invasive diseases in high 128 

burden settings. 129 

 130 

To fill this knowledge gap, we sequenced the stool microbiome of 258 participants enrolled in 131 

the STRATAA study, conducted in three diverse high typhoid fever burden settings in Asia and 132 

Africa (Meiring et al. 2021). Signals that replicated in more than one study population were 133 

further investigated in a UK-based CHIM cohort.  134 
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Materials & Methods 135 

Participants and sample collection 136 

Detailed methods for the STRATAA study have been published previously (Darton et al. 2017; 137 

Meiring et al. 2021). In brief, approximately 100,000 individuals were enumerated in a 138 

demographic census in three communities: Ndirande in Blantyre, Malawi; Lalitpur in 139 

Kathmandu, Nepal; and Mirpur in Dhaka, Bangladesh. Febrile patients, of any age, within the 140 

study populations were recruited via passive surveillance, and “acute typhoid fever” patients 141 

were defined as those with positive blood cultures yielding S. Typhi. When participants 142 

presented with fever, stool samples were collected where possible, preferably prior to 143 

antimicrobial use. Stool specimens were transferred to -80°C within 6 hours of collection. Data 144 

on antimicrobial use prior to their enrolment was recorded (Darton et al. 2017). Blood-culture 145 

confirmed typhoid fever patients were then followed up and stool samples were collected from 146 

their household contacts; asymptomatic stool culture-negative individuals were included in 147 

microbiome sequencing. High Vi-titre individuals were identified from a community-based 148 

serological survey of up to 8,500 age-stratified participants per site from the original 149 

demographic census. From the serological survey, samples were analysed for anti-Vi IgG 150 

antibody (Meiring et al. 2021). The participants at each site with the highest Vi responses were 151 

followed up and stool sample collected for microbiome analysis (Khanam et al. 2021). Stool 152 

cultures were S. Typhi-negative in all but one participant (Khanam et al. 2021), however it is 153 

known that carriers shed only intermittently and high-Vi individuals is an acceptable predictor for 154 

S. Typhi carriage (Robbins and Robbins 1984; Qureshi et al. 2024). For the microbiome sub-155 

study, we randomly selected for sequencing stool samples from up to 40 participants from each 156 

site, from each of three groups: acute typhoid fever cases, household contacts, and serosurvey 157 

participants with high-Vi titres. 158 

 159 

Research ethics committee approval for a joint study protocol across all three surveillance sites 160 

was obtained within each country and from the Oxford Tropical Research Ethics Committee 161 

(University of Oxford, Oxford, UK). 162 
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DNA extraction and sequencing 163 

DNA extraction from stool was done using the Fast-Prep 24 FastDNA Spin Kit (MP Biomedicals, 164 

CA, USA) according to manufacturer’s instructions. DNA was sent to the Wellcome Sanger 165 

Institute (UK) for metagenomic sequencing using Illumina HiSeq 2500 or HiSeq 4000 to 166 

generate 150 bp paired end reads, yielding an average 14.8 million read pairs (standard 167 

deviation 2.3 million) per sample. 168 

Bioinformatics 169 

Raw sequencing data was quality trimmed and adapters were removed using bbduk v38.96 with 170 

the parameters `ktrim=r k=23 mink=11 hdist=1 tbo tpe qtrim=r trimq=20 minlength=50`. 171 

Sequence deriving from human DNA was removed by mapping to a human reference genome 172 

(GCF_009914755.1) and the hostile tool (Constantinides, Hunt, and Crook 2023). Taxonomic 173 

profiling was carried out with metaphlan v4.0.6 with database version 174 

mpa_vOct22_CHOCOPhlAnSGB_202212 (Blanco-Míguez et al. 2023).  175 

 176 

We used the BiG-MAP program (Victória Pascal Andreu et al. 2021) 177 

(https://github.com/medema-group/BiG-MAP, commit e7b8042) to compare metagenomic 178 

readsets against a database of non-redundant metabolic gene clusters (MGCs) identified using 179 

gutSMASH (Victòria Pascal Andreu et al. 2023) from a collection of reference genomes from the 180 

Culturable Genome Reference, the Human Microbiome Project and other Clostridia genomes 181 

(https://zenodo.org/records/7252625#.ZFVTrexBz0r). Each MGC is assigned to a species which 182 

is the species from which the representative sequence representing the cluster was obtained. 183 

BiG-MAP calculated the number of reads per kilobase per million reads (RPKM) for each 184 

metabolic gene cluster. 185 

 186 

A sub-sample of 8.8 million reads was taken from each readset using the `sample` command of 187 

the seqtk tool (v1.3-r106). Sub-sampled reads were then analysed with Resistance Gene 188 

Identifier (RGI) v6.0.2 bwt command against the CARD v3.2.7 reference database (Alcock et al. 189 

2023). Due to uncertainty regarding some CARD database classifications (e.g. OXA-1 was 190 

classified as a carbapenemase, a curation error which has subsequently been resolved), we 191 

used the drug class information for each gene from the NCBI AMR Reference Gene Database 192 

(refgene) v2023-08-08.2 (https://www.ncbi.nlm.nih.gov/pathogens/refgene). Only “Core” genes 193 
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from NCBI refgene were analysed; these genes are almost entirely mobilisable AMR 194 

determinants and do not include mutational resistance. Extended-spectrum beta-lactamases 195 

(ESBLs) were identified based on the gene product descriptions in NCBI refgene. Only genes 196 

with an Average Percent Coverage of 100% in the RGI analysis were included in further 197 

analysis. The number of reads mapped to each gene (RGI Completely Mapped Reads) was 198 

normalised by the length of the gene (RGI Reference Length) to generate a “Reads per kilobase 199 

of AMR gene” metric. There was no need to normalise for the number of reads, as all readsets 200 

had been sub-sampled to the same number of reads. RGI results were parsed and analysed 201 

using the scripts described in the Data Availability section of this manuscript. AMR genes 202 

identified in S. Typhi were obtained from (Argimón et al. 2021). 203 

 204 

Statistical analysis 205 

Statistical analyses were done in R (v4.1.0). To quantify alpha diversity, Shannon’s index was 206 

calculated using the alpha.div function in the rbiom package (v1.0.3), and ANOVA analysis 207 

carried out with the aov function (stats package, v4.1.0). The Bray-Curtis metric of beta diversity 208 

was calculated with the vegdist function of the R package vegan (v2.6.4). Principal co-ordinates 209 

analysis (PCoA) was carried out with the cmdscale function (package stats, v4.1.0), and 210 

statistics comparing beta diversity between participant groups (i.e. acute typhoid, household 211 

contacts, presumptive carrier) was carried out using a PERMANOVA approach implemented by 212 

the adonis2 function of the vegan package (v2.6.4). Associations between taxa and phenotypes 213 

of interest (e.g. participant group) were explored using multivariable linear modelling 214 

implemented in the maaslin2 function of the maaslin2 R package (v1.6.0) (Mallick et al. 2021). 215 

Depending on the analysis, co-variates such as age, sex, antibiotic exposure, and sequencing 216 

run were included, as described. For maaslin2 analyses, Benjamini-Hochberg correction was 217 

applied for multiple testing. For analyses of data from endemic cohorts a q-value threshold of 218 

0.05 was used to identify significant associations, while for CHIM data analyses, due to small 219 

sample size, the default maaslin2 q-value threshold of 0.25 was used. 220 

Controlled human infection model analysis 221 

We used data from a Salmonella Typhi and Paratyphi A CHIM cohort to validate the 222 

associations identified in the endemic countries.  Briefly, healthy adults aged 18-60 were 223 

recruited to be challenged with a single oral dose of either S. Typhi or S. Paratyphi A (Gibani et 224 

al. 2020). The primary endpoint for the model was a diagnosis of typhoid or paratyphoid fever, 225 
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defined as a temperature of ≥38°C persisting for ≥12 hours and/or S. Typhi/Paratyphi A 226 

bacteraemia in a sample collected ≥72 hours after oral challenge. Only data from participants 227 

who were being challenged for the first time were analysed here. Stool samples were taken 228 

from participants prior to challenge and stored at -80°C. DNA extraction, sequencing and 229 

analyses was undertaken using the methods described above. The primary maaslin2 analyses 230 

for this cohort included only species or MGC classes that were significantly associated with 231 

participant group in at least two endemic country cohorts; a secondary analysis was carried out 232 

without this restriction. Analyses were done separately for participants challenged with either S. 233 

Typhi or S. Paratyphi A, in addition to a combined analysis including both pathogens. 234 

  235 
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Results 236 

Description of population 237 

Stool microbiome sequences were successfully generated for 258 participants from Bangladesh 238 

(n = 80), Malawi (n = 102), and Nepal (n = 76). Across the three populations, there were three 239 

participant groups; 92 patients with acute typhoid fever, 97 household contacts of acute typhoid 240 

cases, and 69 people with high anti-Vi titres. The baseline characteristics of participants are 241 

described in Table 1. Overall, acute typhoid fever patients were significantly younger than 242 

household contacts, while in Bangladesh and Malawi high-Vi titre participants were significantly 243 

older than household contacts (Supplementary Figure 1, Table 1). Overall, in Malawi, 244 

Bangladesh, and Nepal, 62%, 53% and 54% of participants were female, respectively (Table 1, 245 

Supplementary Figure 2). In Bangladesh and Malawi, sex distribution was similar between the 246 

participant groups, whereas in Nepal, 82% of household contacts and 67% of carriers were 247 

female, while only 24% of typhoid fever cases were female (Table 1, Supplementary Figure 2). 248 

Of the acute typhoid fever cases, 37.5%, 73.9% and 44.8% from Bangladesh, Malawi, and 249 

Nepal, respectively, reported antimicrobial use in the 2 weeks prior to stool sample collection. 250 

  251 
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Table 1: Characteristics of participants in the microbiome sub-study of STRATAA surveillance 252 

  Bangladesh Malawi Nepal 

Acute typhoid 

N 40 23 29 

Median age, years 
(range) 

6 (1-60) 10 (3-40) 17 (5-38)  

Female (%) 48% 61% 24% 

Antibiotics in last 2 
weeks (%) 

38% 74% 45% 

Carrier 

N NA* 39 30 

Median age NA* 32 43.9 

Female (%) NA* 56% 67% 

Antibiotics in last 2 
weeks (%) 

NA* NA✝ NA✝ 

Control 

N 40 40 17 

Median age, years 
(range) 

29 (4-65) 24 (18-41) 35 (15-48) 

Female (%) 65% 65% 82% 

Antibiotics in last 2 
weeks (%) 

NA✝ NA✝ NA✝ 

* Carriers from Bangladesh were not included in the analysis due to sample protocol differences 253 

✝ Antibiotic usage in the two weeks previous was an exclusion criterion for carriers and 254 

household contacts. 255 

Acute typhoid fever patients compared with household contacts  256 

First, we compared stool metagenomic profiles of acute typhoid patients with those of 257 

household contacts, within each of the three study populations, to explore microbiome 258 

signatures associated with typhoid fever. Participant group was not significantly associated with 259 

differences in alpha diversity in any population (Supplementary Figure 3, Supplementary Table 260 

1). Beta diversity varied significantly between typhoid fever patients and household contacts 261 

across all sites (Figure 1, Supplementary Table 2). The proportion of beta diversity variance 262 

explained by participant group was highest in Malawi (R2 = 0.25, FDR = 0.01), followed by 263 
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Bangladesh (R2 = 0.07, FDR = 0.01), Nepal (R2 = 0.06, FDR = 0.01 and the combined analysis 264 

(R2 = 0.04, FDR = 0.01) (Figure 1, Supplementary Table 2, Supplementary Table 3, 265 

Supplementary Table 4, Supplementary Table 5). Participant group explained the greatest beta 266 

diversity variance of the factors investigated (which also included sex, age, and reported 267 

antibiotic use) in a combined analysis of all three sites and for each site individually. In Malawi, 268 

prior antibiotic usage and the interaction of prior antibiotic usage with age and sex were also 269 

significantly associated with beta diversity, although these variables explained a lower 270 

proportion of variance than participant group (R2 0.02-0.05, Supplementary Table 4). In Nepal, 271 

sex was significantly associated with beta diversity and explained almost as much variance as 272 

participant group (R2 = 0.04, Supplementary Table 5), which was itself associated with sex at 273 

this site. Firmicutes was the dominant phylum in typhoid fever patients and household contacts 274 

at all three sites, followed by Bacteroidetes in Malawi and Nepal and Actinobacteria in 275 

Bangladesh (Supplementary Figure 4, Supplementary Table 6).  276 
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277 
Figure 1: Principal co-ordinate analysis of the beta diversity between household contacts and typhoid fever 278 
participants across all three sites, and for each site individually. The proportion of variance explained (R2) and the 279 
Bonferroni corrected FDR from a PERMANOVA analysis including participant group, sex, and antibiotic usage are 280 
displayed on each plot. In the combined analysis, country of sampling was also included in the PERMANOVA 281 
analysis. 282 

Maaslin2 analysis of taxonomic profiles identified 92, 23 and 0 species significantly associated 283 

with household contact vs typhoid fever participant groups in Malawi, Bangladesh, and Nepal, 284 

respectively (Figure 2, Supplementary Table 7, Supplementary Table 8). No taxa showed 285 

significant associations across all three sites; however, four showed consistent associations at 286 

two sites (Bangladesh and Malawi), all of which were negatively associated with typhoid fever 287 

(Figure 2). These four species were Prevotella copri clade A, Haemophilus parainfluenzae, 288 

Clostridium SGB6179 and a Veillonellaceae spp represented by a metagenome assembled 289 

genome, GGB4266_SGB5809. Although there were differences in age between cases and 290 

household contacts at all sites, age was included as a covariate in maaslin2, and the 291 

associations with typhoid status were also evident within age groups where data from that age 292 

14
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group was available (Supplementary Figures 5-8). Of these four species, none were significantly293 

associated with typhoid fever in Nepal or the CHIM; most samples from the CHIM did not 294 

contain any reads assigned to these species (Supplementary Table 29).295 

296 
Figure 2: Forest plot of species that significantly differed between household contacts and typhoid fever participants 297 
in at least two endemic countries. Results from all three endemic countries and the CHIM cohort are shown for 298 
context. CHIM maaslin2 analysis only included species that were significantly associated in at least two of the 299 
endemic country sites. Species are labelled with their GTDB identifier, note that ‘s__ GGB4266_SGB5809’ refers to a 300 
proposed novel genus/species of Veillonellaceae. 301 

 302 

Some species were associated with typhoid fever at a single endemic country site. In 303 

Bangladesh, there were 19 species  for which the relative abundance significantly differed 304 

between typhoid fever participants and household contacts, that didn’t differ at any other site, or 305 

in the CHIM (Supplementary Table 7). Three species were negatively associated with typhoid 306 

fever (Prevotella copri clade C, Romboutsia timonensis, and Ligilactobacillus ruminis), while 16 307 

species including 7 species of Actinomyces were positively associated with typhoid fever 308 

(Supplementary Table 7). In Malawi, 70 species were negatively associated with typhoid fever, 309 

including Ruminococcus gnavus, Roseburia intestinalis, Roseburia inulinivorans, and 310 

Faecalibacterium prausnitzii (Supplementary Table 8), while 18 species were positively 311 

associated with typhoid fever including 11 (61%) that are only in the Metaphlan4 database as 312 

metagenome assembled genomes (Supplementary Table 8). 313 

15
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 314 

To complement our taxonomic analysis, we also carried out functional gene analysis. We 315 

explored two dimensions of variation in metabolic gene clusters (MGCs). First, we examined the 316 

distribution of specific MGCs, investigating participant group differences at a granular, sub-type 317 

level (e.g. a specific RNF complex from a strain of Bacteroides ovatus). Second, we compared 318 

the abundance of different MGC types between participant groups (e.g. all RNF complex 319 

MGCs). This dual approach enables us to capture both detailed and broad patterns of functional 320 

gene distribution within the microbiome. 321 

 322 

We identified 264 specific MGCs that significantly differed between typhoid fever patients and 323 

household contacts in the Malawi cohort, 126 in Bangladesh, and 2 in Nepal (Supplementary 324 

Table 24, Supplementary Table 25, Supplementary Table 26). Neither of the specific MGC 325 

associations identified in the Nepal data were replicated in the Malawi or Bangladesh cohorts. 326 

There were 28 specific MGCs significantly associated with typhoid fever in both Bangladesh and 327 

Malawi (summarised in Table 2, full information in Supplementary Table 9), all were negatively 328 

associated with typhoid fever in both settings. Six of these specific MGCs were linked to SCFA 329 

metabolism (‘pyruvate2acetate.formate’) and five to anaerobic metabolism (‘Rnf complex’), 330 

associated with Prevotella and Haemophilus (see Figure 2, Supplementary Table 9). None of 331 

these 28 specific MGCs showed negative associations with acute typhoid fever in Nepal. 332 

  333 
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Table 2: Summary of the specific MGCs negatively associated with typhoid fever in both Bangladesh and Malawi, and 334 
the species of each MGC reference sequence. Full information in Supplementary Table 9. 335 

MGC_class n Species 

Pyruvate2acetate.formate 6 Haemophilus aegyptius, Haemophilus haemolyticus, 

Haemophilus parainfluenzae, Prevotella copri, 

Prevotella sp., Prevotella sp. 

Rnf_complex 5 Haemophilus parainfluenzae, Prevotella copri, 

Prevotella sp., Prevotella sp., Prevotella sp. 

TPP_AA_metabolism 4 Clostridium celatum, Haemophilus pittmaniae, 

Haemophilus sputorum, Prevotella sp. 

Respiratory_glycerol 2 Aggregatibacter sp., Haemophilus parainfluenzae 

Arginine2putrescine.Putrescine2spermidine 1 Romboutsia sp. 

Formate_dehydrogenase 1 Haemophilus sp. 

Fumarate2succinate 1 Haemophilus sp. 

OD_eut_pdu_related.PFOR_II_pathway 1 Paeniclostridium sordellii 

OD_fatty_acids 1 Dialister succinatiphilus 

Others_HGD_unassigned 1 Prevotella copri 

PFOR_II_pathway 1 Prevotella sp. 

TPP_AA_metabolism.Arginine2putrescine 1 Haemophilus sp. 

TPP_fatty_acids 1 Prevotella copri 

porA 1 Prevotella copri 

succinate2propionate 1 Dialister invisus 

 336 

There were 31 MGC types that significantly differed between typhoid fever patients and 337 

household contacts in the Malawi cohort, 8 in Bangladesh, and 1 in Nepal (Figure 3, 338 

Supplementary Table 30). There was one MGC type that was negatively associated with 339 

typhoid fever in both Malawi and Bangladesh, “TPP_AA_metabolism.Arginine2putrescine”. 340 

Other MGC types that were negatively associated with typhoid fever in Malawi only included 341 

“acetate2butyrate.TPP_fatty_acids”, “TPP_fatty_acids.aminobutyrate2Butyrate”, 342 

“acrylate2propionate” and “Rnf_complex.succinate2propionate”, while in Bangladesh, 343 

“Pyruvate2acetate” was negatively associated with typhoid fever. In Bangladesh, 344 

“Others_HGD_unassigned.Nitrate_reductase" was positively associated with typhoid fever, 345 

while in Malawi, two MGC types were positively associated with typhoid fever – 346 

“Molybdopterin_dependent_oxidoreductase” and “pdu”. In Nepal, 347 

“Fumarate2succinate.fatty_acids” was significantly negatively associated with typhoid fever.  348 
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 349 
Figure 3: Forest plot of selected MGC types that differed significantly between household contacts and typhoid fever 350 
participants in at least one cohort. If an entry is NA, then there was insufficient of that MGC type identified in that 351 
cohort for maaslin analysis. 352 

18
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We hypothesised the taxa and MGCs that were found in higher abundance in asymptomatic 353 

household contacts of typhoid fever patients may be protective against developing disease upon 354 

exposure to S. Typhi. We sought to explore this more directly by assessing their abundance in 355 

CHIM participants who did or did not develop enteric fever upon challenge with typhoidal 356 

Salmonella, in a UK-based study (Gibani et al. 2020). We sequenced the microbiomes of 13 357 

participants who were subsequently challenged with S. Typhi and 13 with S. Paratyphi A, of 358 

which 7 and 6 were diagnosed with enteric (typhoid or paratyphoid) fever, respectively 359 

(Supplementary Table 18). There was no significant difference (FDR < 0.05) in alpha or beta 360 

diversity at baseline among CHIM participants by age at challenge, sex, or subsequent enteric 361 

fever diagnosis (Supplementary Table 19, Supplementary Table 20, Supplementary Figure 15). 362 

In an analysis including only the 28 MGC classes that were identified as negatively associated 363 

with typhoid in both Malawi and Bangladesh, two were also negatively associated with typhoid 364 

fever diagnosis in CHIM participants: an “Rnf_complex.Glycine_cleavage.succinate2propionate” 365 

MGC (coefficient = -3.4, q-value = 0.22) and an “Rnf_complex” MGC (coefficient = -6.2, q-value 366 

= 0.22) (Supplementary Figure 16, full results available in Supplementary Table 23). None of 367 

the 28 MGC classes tested were associated with paratyphoid fever or a combination of both 368 

typhoid and paratyphoid fever. We investigated whether any of the species associated with 369 

typhoid in both Malawi and Bangladesh were associated with susceptibility to typhoid and/or 370 

paratyphoid fever in the CHIM cohort; none of them were (see Figure 2). All four species that 371 

were associated with typhoid fever in the endemic cohorts were not detected in the majority of 372 

samples from the CHIM (Supplementary Table 29). 373 

Analysis of high-Vi participants 374 

High-Vi participants may represent asymptomatic gall-bladder carriers, or individuals with recent 375 

exposure or sub-clinical infection, either of whom may be a source in transmission. Detection of 376 

carriers is important for typhoid fever control, and will remain so even as disease incidence 377 

reduces due to vaccination and improvements in WASH, therefore we sought to explore the 378 

microbiome signature of this group. Samples from Bangladesh were not included in this 379 

analysis, as laboratory processing of the high Vi-titre participant samples from Bangladesh was 380 

not consistent with the other sites or participant groups. Using PERMANOVA, participant group 381 

was significantly associated with beta diversity in both countries (age and sex were not 382 

significant, Supplementary Table 11, Supplementary Table 12). Participant group explained 383 

greater variance in the Malawi cohort (R2 0.25, FDR=0.01) than Nepal (R2 0.07, FDR=0.01, 384 
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Supplementary Table 11, Supplementary Table 12,385 

386 

Supplementary Figure 10). The three participant groups have distinct beta-diversity signatures, 387 

with high-Vi individuals closer to typhoid patients than to household contacts (Figure 4). In the 388 

Malawi cohort, 125 bacterial species significantly differed between household contacts and high 389 

Vi-titre individuals (Supplementary Table 13), and 41 of these also significantly differed between 390 

household contacts and typhoid fever (Supplementary Table 21). These 41 species include H. 391 

parainfluenzae, Blautia obeum, and Ruminococcus gnavus (all less prevalent in acute typhoid 392 

and high-Vi individuals than household contacts, Supplementary Figure 11). Amongst Nepal 393 

samples, only one species significantly differed between household controls and high-Vi 394 

individuals (the Firmicutes SGB GGB9790 SGB15413). There were no species associated with 395 

household contacts compared with typhoid patients from Nepal, and SGB15413 did not differ 396 

between these groups (Supplementary Figure 12). 397 

20
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398 
Figure 4: Heatmap of the abundance of the 400 most abundant species in household contacts, acute typhoid fever 399 
cases and high Vi-titre participants from Malawi. The columns are sorted by participant group, rows are sorted by 400 
hierarchical clustering across all samples. 401 

The combined relative abundance of species only described as species genome bins (SGBs) 402 

was significantly lower in household contacts in Malawi (13.9%), compared with both typhoid 403 

fever patients (34.8%, P=0.012) and high Vi-titre participants (47.1%, P=2.2x10-16) in this setting404 

(Supplementary Figure 13). The 50 SGBs with the highest summed abundance across all 405 

participant types in Malawi belonged to Firmicutes (n = 41), Actinobacteria (n = 4), 406 

Bacteroidetes (n = 3), and Proteobacteria (n = 2) (Supplementary Table 22). The most common 407 

families of the 50 most abundant SGBs were Oscillospiraceae (n = 13), Lachnospiraceae (n = 408 

7), and Clostridiaeceae (n = 4) (Supplementary Table 22). In Nepal, high Vi-titre individuals had 409 

lower SGB relative abundance than acute typhoid cases (16.8% vs 29.9%, p = 0.03, 410 

Supplementary Figure 13). 411 

21
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AMR genes 412 

We recently reported AMR genotypes and phenotypes for S. Typhi isolated from acute typhoid 413 

fever cases in Bangladesh, Malawi, and Nepal (Dyson et al. 2024). Quinolone resistance was 414 

common in Bangladesh and Nepal but rare in Malawi; here we saw a similar pattern reflected in 415 

the gut microbiomes, with 2% quinolone resistance in Malawi, 30% in Bangladesh and 15% in 416 

Nepal (only mobile genetic element encoded quinolone determinants were analysed in the 417 

metagenomic data, Supplementary Table 14). Macrolide resistance was identified in one S. 418 

Typhi isolate from Bangladesh (0.6%) but not in Nepal or Malawi, here we found higher rates of 419 

macrolide resistance in microbiomes from individuals in Bangladesh (38%) and Nepal (35%) 420 

and lower in Malawi (11%). For the older drugs, S. Typhi isolates from Malawi had near-421 

universal resistance to older sulfonamides and tetracyclines, and this was mirrored in high rates 422 

of resistance genes to these drugs in the microbiome samples (92% sulfonamides, 52% 423 

tetracycline). ESBLs were not detected in any S. Typhi isolates but were common in the 424 

microbiomes in Nepal (17%) and Bangladesh (9%); less so in Malawi (3%). 425 

 426 

The proportion of samples with macrolide and trimethoprim resistance genes that have been 427 

observed in S. Typhi was significantly higher in participants with acute typhoid fever than in 428 

household contacts or high Vi-titre participants (macrolides = 42%, 14%, 22% respectively, Chi-429 

square test p-value =4.4x10-5; trimethoprim = 32%, 12%, 20% respectively, Chi-square test p-430 

value = 0.005). There was no significant difference between participant types in the proportion 431 

of samples with resistance genes to any other drug classes. There was no statistically 432 

significant association between prior reported antibiotic usage and the number of AMR genes 433 

(Wilcoxon-rank sum P-value = 0.52) or the number of AMR gene classes (Wilcoxon Rank Sum 434 

P-value = 0.56) in typhoid fever patients across all sites (Supplementary Figure 14). 435 
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Discussion 436 

In this study, we examined the relationship between the stool microbiome and typhoid fever in 437 

three settings with endemic disease. Our analyses identified four microbial species (Figure 2), 438 

linked to anaerobic fermentation and SCFA metabolism (Table 2), that differentiated typhoid 439 

fever patients from household contacts in Bangladesh and Malawi. While these taxa were not 440 

found in the UK-based CHIM participants, a different MGC with a potential link to SCFA 441 

metabolism was higher in participants who were not susceptible to typhoid fever. Looking at the 442 

abundance of different MGC types (as opposed to specific MGCs) we found four types of MGC 443 

involved in SCFA metabolism that were negatively associated with typhoid fever in Malawi, and 444 

one in Bangladesh. Overall, our data support a protective role for SCFA-producing microbes, 445 

although with our study design it is not possible to deconvolute the impact of the microbiome on 446 

typhoid from the impact of typhoid on the microbiome. 447 

 448 

The strengths of our study include a larger sample size than previous investigations of the 449 

interaction between typhoid fever and the microbiome, and a multi-site study design to increase 450 

generalisability. In contrast to previous studies of the microbiome and typhoid fever, we used 451 

shotgun metagenomics to characterise the gut flora, enabling in depth functional analysis and 452 

investigation of AMR genes. Notably, using the same methodology to analyse participants from 453 

different countries, most of the taxa we associated with typhoid fever differed between locations. 454 

This suggests that susceptibility to disease in different human populations may be modified by 455 

different species, which could hamper the generalisability of study findings between populations. 456 

It is notable that the most consistent microbial signature for disease susceptibility, identified 457 

across multiple study populations with small sample sizes, was a functional signature 458 

(specifically gene clusters associated with SCFA metabolism) rather than any specific taxa that 459 

perform this function. 460 

 461 

One of the key limitations of our study is the lack of age and sex matching between the typhoid 462 

fever and household contact groups. The age and sex composition of the household controls 463 

reflects the occupants of the household during the daytime visits of the study workers. This 464 

discrepancy may introduce bias, as age and sex are known to influence the composition and 465 

function of the microbiome (Yatsunenko et al. 2012). Although these variables were included in 466 

the statistical analyses, the lack of matching weakens our findings. Our use of a case-control 467 

study design in the endemic countries generated numerous hypotheses for subsequent 468 
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research, but it does not prove causal relationships. Additionally, we did not collect dietary 469 

information from participants. Diet is a major determinant of microbiome composition and 470 

function, and variations in dietary habits could confound the associations we observed 471 

(Bourdeau-Julien et al. 2023). Lastly, accounting for the effect of antibiotics on the microbiome 472 

in these cohorts presents a complex challenge, as it can significantly alter microbiome 473 

composition and potentially mask or mimic associations with typhoid fever. These challenges 474 

could largely be addressed using CHIM studies. Unfortunately, the only available CHIM data 475 

was from a different study population (in the UK) and with a small sample size (n=13 exposed to 476 

S. Typhi). Use of larger high-income country CHIMs and development of CHIMs in populations 477 

from settings with endemic disease would be helpful to better elucidate specific microbial 478 

signatures of protection.  479 

 480 

Our use of shotgun metagenomics enabled us to also investigate the prevalence of AMR genes 481 

associated with resistance in S. Typhi across the three sites and participant groups. Macrolide 482 

and trimethoprim resistance genes were more common in acute typhoid cases compared with 483 

the household controls and high Vi-titre participants, highlighting that typhoid and associated 484 

antimicrobial usage imposes a selective pressure on the gut microbiome. This supports the idea 485 

that reducing disease via immunisation could reduce AMR beyond just S. Typhi. Higher levels of 486 

resistance to sulphonamides in Malawi likely reflects the common use of trimethoprim-487 

sulfamethoxazole in HIV/AIDS programs (MacPherson et al. 2022), while higher microbiome 488 

prevalence of acquired ESBL and fluoroquinolone-resistance genes in Bangladesh than Malawi 489 

reflects the local epidemiology (e.g. recent studies of blood stream infections show that in 490 

Bangladesh, 72% and 75% were resistant to ciprofloxacin and third-generation cephalosporins 491 

respectively, compared with 31% and 30% in Malawi) (Musicha et al. 2017; Ahmed et al. 2017). 492 

The gut microbiome prevalence of resistance genes followed a similar pattern to the prevalence 493 

of resistance genes in S. Typhi observed from these sites (Dyson et al. 2024) for tetracycline, 494 

sulphonamides and quinolones, which likely reflects a shared evolutionary pressure on the 495 

isolates and the microbiome. The fact that non-ESBL beta-lactamases were identified in fewer  496 

metagenomes than ESBL beta-lactamases is because we only counted beta-lactamase 497 

encoding genes that are commonly found in S. Typhi. 498 

 499 

Zhang et al. investigated 16S community profile and metatranscriptome features associated 500 

with susceptibility to typhoid fever in a CHIM (Zhang et al. 2018). One of their primary findings 501 

was that the archaeal genus Methanobrevibacter was enriched in people who were challenged 502 
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with S. Typhi but did not develop disease. In contrast, we only identified one association with a 503 

Methanobrevibacter species (M. smithii); a positive association with typhoid fever in Malawi. 504 

Furthermore, Zhang et al., identified that Prevotella was higher in people who developed typhoid 505 

fever, in contrast to our findings that it was negatively associated with typhoid fever in natural 506 

infections in endemic settings. One source of these discrepancies could be that Zhang et al. 507 

employed 16S, while we used shotgun metagenomics. Haak et al. observed more SCFA 508 

producing bacteria in, in both healthy control and febrile but non-typhoid fever participants in 509 

their study in Bangladesh compared with typhoid fever patients, and higher faecal load of 510 

SCFAs in controls than any febrile group (Haak et al. 2020), which corresponds well with our 511 

findings. It has also been shown that higher SCFAs in an acidic environment, and a strict 512 

anaerobic environment, can inhibit the growth of Enterobacteriaceae such as Salmonella via 513 

both direct and indirect mechanisms (Byndloss et al. 2017; Jacobson et al. 2018; Rogers, 514 

Tsolis, and Bäumler 2021). Recently, higher relative abundance of butyrate producing bacteria 515 

was associated with a reduced risk of hospitalisation for infections in a prospective study carried 516 

out in high income European countries (Kullberg et al. 2024). Two MGC types positively 517 

associated with typhoid fever in Malawi were molybdopterin dependent oxidoreductase and 518 

propanediol utilisation microcompartments, both of which enable growth in the inflamed gut 519 

(Faber et al. 2017; Zhu et al. 2018), suggesting that the microbiota of typhoid fever participants 520 

in Malawi may be in a state of dysbiosis. Arginine to putrescine was the only MGC type 521 

associated with health in both Bangaldesh and Malawi, polyamines such as putrescine promote 522 

gut barrier integrity (Rao, Xiao, and Wang 2020), and can act as immunomodulators (Proietti et 523 

al. 2020). 524 

 525 

Our findings from the STRATAA cohorts can be interpreted from two perspectives: i) the 526 

microbiota protecting against typhoid and, ii) typhoid causing microbiota changes. In contrast, 527 

the CHIM study design enables us to specifically assess whether microbiota present prior to 528 

pathogen exposure are associated with the outcome of that exposure (i.e. developing disease 529 

or not). Unfortunately, none of the taxa negatively associated with typhoid fever in the endemic 530 

settings were present in most of the CHIM participants, making it impossible to validate the 531 

association. It is well established that microbiome species composition differs between human 532 

populations, and particularly between those in high-income countries and low-and-middle-533 

income countries (Gupta, Paul, and Dutta 2017). However, the metabolic gene cluster findings 534 

identified a recurring finding across the endemic settings and the CHIM; an association between 535 

species encoding SCFA metabolising genes and non-susceptibility to typhoid fever. While it 536 
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should be noted that the CHIM sample size was small, the fact that we identified a statistically 537 

significant difference supports the idea that the effect is quite strong. While our CHIM analyses 538 

lacked power, which is reflected in the high q-values obtained, the q-value for the SCFA MGC 539 

association was below the default maaslin2 threshold for significant findings. 540 

 541 

Both P. copri and H. parainfluenzae, which were significantly lower in typhoid fever patients 542 

compared with household contacts in both Bangladesh and Malawi, are associated with 543 

increased gut inflammation (Sohn et al. 2023; Larsen 2017). P. copri is thought to increase 544 

Th17 inflammation (Godinez et al. 2011) while H. parainfluenzae stimulates intestinal (IFN-γ)+ 545 

CD4+ T cells (Sohn et al. 2023), two mechanisms which play a key role in the response to 546 

Salmonella infections (Bao et al. 2000; Raffatellu et al. 2008). Increased inflammation could 547 

prime the host to respond more rapidly to pathogenic exposures, leading to enhanced control of 548 

infections. It is highly plausible that the gut microbiome plays a role in shaping the response of 549 

the immune system to pathogen challenge (Durack and Lynch 2019). This intriguing association 550 

needs further investigation, as the role of inflammation in enabling Salmonella to overcome 551 

colonisation resistance in mice is well established (Winter et al. 2010; Rogers, Tsolis, and 552 

Bäumler 2021). Among the species negatively associated with typhoid fever in Malawi only was 553 

Ruminococcus gnavus, which could influence susceptibility to enteric infection via IgA 554 

stimulation (Bunker et al. 2019), protects against enteropathogenic E. coli (McGrath et al. 2022), 555 

stimulates host tryptophan catabolism (Hoffmann et al. 2016) (S. Typhi requires tryptophan to 556 

grow in macrophages (Blohmke et al. 2016)), and produces secondary bile acids including 557 

chenodeoxycholic acid and iso-LCA that have anti-virulence effects on Salmonella (Lee et al. 558 

2013; Yang, Stein, and Hang 2023).  559 

 560 

Direction of causality cannot be determined from our study design, and a murine model of 561 

Salmonella Typhimurium infection recently reported shifts in gut microbiome composition, 562 

including a reduction in Ruminococcaceae taxa associated with acetate and butyrate 563 

production, following infection (Rogers et al. 2024). It is therefore plausible that the microbiome 564 

is modified in people suffering from typhoid fever. Gut disruption is known to alter the gut 565 

microbiome, for example, colorectal cancer patients from Morocco and Kenya had reduced P. 566 

copri in their gut, (Allali et al. 2018; Obuya et al. 2022). Potential triggers for microbiome 567 

alterations in typhoid fever could include antibiotic exposure, dietary changes or anorexia due to 568 

sickness, S. Typhi-induced malabsorption in the small intestine resulting in alterations to the 569 

nutrient composition within the large intestine, and the direct impact of fever on microbiome 570 
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composition as the increase in temperature could favour the growth of particular bacterial 571 

species (Chuttani, Jain, and Misra 1971; Huus and Ley 2021). 572 

 573 

We cannot be certain about the exact cause of higher levels of anti-Vi antibodies in the high Vi-574 

titre participants. Potential sources of immune stimulation include recent asymptomatic S. Typhi 575 

exposure/infection, exposure/infection with Citrobacter freundii which can be Vi-antigen positive, 576 

or chronic S. Typhi carriage. It is striking that there was a clear divergence in microbiota profile 577 

between these participants and acute cases and household contacts in Malawi, as this suggests 578 

that there is an interaction between the cause of the high Vi-titre and the gut microbiota. The 41 579 

species that were significantly lower in both typhoid fever cases and high Vi-titre participants 580 

included the potentially immune-modulatory H. parainfluenzae (Sohn et al. 2023), the bile acid 581 

modifying B. obeum (formerly Ruminococcus obeum), and R. gnavus. Notably, it has been 582 

demonstrated that bile salt hydrolases encoded by B. obeum can inhibit Vibrio cholerae 583 

virulence gene activation and colonization (Alavi et al. 2020), and it is intriguing to hypothesise a 584 

similar mechanism might protect against S. Typhi gallbladder carriage and/or systemic infection. 585 

The influence of these species on susceptibility to S. Typhi infection, gallbladder carriage, and 586 

immune-reactivity should be investigated further.  587 

 588 

Conclusions 589 

We found that typhoid fever patients in Malawi and Bangladesh display distinct microbiome 590 

signatures compared to household contacts, marked by lower abundance of SCFA producers 591 

and inflammation-related species. The negative association between SCFA producing genes 592 

and typhoid fever susceptibility was also replicated to some extent in our UK-based challenge 593 

study. The differences in species composition in the microbiota of these distinct cohorts make 594 

direct comparison and therefore validation difficult, highlighting the importance of establishing 595 

challenge studies in endemic settings to directly address important mechanistic questions.  596 
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Data availability 597 

The code used in the analysis of these data is available on github - 598 

https://github.com/flashton2003/STRATAA_metagenomics. Sequencing data for this project are 599 

available at the European Nucleotide Archive, project accessions PRJEB14050 and 600 

PRJEB22175. 601 
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 915 
 916 

Supplementary Figures 917 

 918 
Supplementary Figure 1: Age distribution of participants in the healthy control, acute typhoid, and presumptive carrier 919 
groups, broken down by study site. Statistical annotations are the p-values resulting from Wilcoxon rank sum tests. 920 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.09.02.24312347doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.02.24312347
http://creativecommons.org/licenses/by/4.0/


 

 36

 921 
Supplementary Figure 2: Sex split of the different participant groups across the different sites. 922 
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 923 
Supplementary Figure 3: Alpha diversity for acute typhoid fever patients and healthy household contacts for each 924 
endemic country study site.  925 

  926 
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 927 

 928 
Supplementary Figure 4: Bar chart showing the prevalence of eight common phyla in acute typhoid patients and 929 
healthy household contacts, for each study site. 930 
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 931 
Supplementary Figure 5: Prevalence of Prevotella copri clade A across age brackets in Malawi, Bangladesh, and 932 
Nepal. 933 

  934 
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 935 

 936 
Supplementary Figure 6: Prevalence of Clostridium SGB6179 across age brackets in Malawi, Bangladesh, and Nepal 937 

 938 
Supplementary Figure 7: Prevalence of GGB4266_SGB5809 across age brackets in Malawi, Bangladesh, and Nepal 939 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.09.02.24312347doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.02.24312347
http://creativecommons.org/licenses/by/4.0/


 

 41

 940 
Supplementary Figure 8: Prevalence of Haemophilus parainfluenzae across age brackets in Malawi, Bangladesh, 941 
and Nepal 942 

 943 
Supplementary Figure 9: Alpha diversity of acute typhoid patients, high Vi-titre participants, and household contacts 944 
from Malawi and Nepal. Statistical annotations are the p-values resulting from Wilcoxon rank sum tests. A single 945 
asterisk indicates a p-value < 0.01, triple asterisk indicates a p-value < 0.0001. 946 
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947 

Supplementary Figure 10: Beta diversity of acute typhoid fever, high Vi-titre participants, and household contacts 948 
from Malawi and Nepal 949 

42
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 950 
Supplementary Figure 11: Prevalence of B. obeum, H. parainfluenzae, and R. gnavus across three participant groups 951 
(household contacts, typhoid cases, and high Vi-titre) in Malawi. 952 
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 953 
 954 
Supplementary Figure 12: Heatmap of top 400 taxa from Nepalese participants – household contacts, acute typhoid 955 
cases and high-Vi titre participants. 956 

 957 

958 
Supplementary Figure 13: The abundance of species only described as species genome bins in the metaphlan 959 
database from Malawian and Nepalese household contacts, acute typhoid, and high-Vi titre participants. 960 

 961 
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962 
Supplementary Figure 14: Comparison of A) the number of AMR gene  and B) the number of AMR gene classes 963 
identified in participants from all three sites who did and did not report antibiotic usage prior to sampling 964 
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 965 
Supplementary Figure 15: Beta-diversity plot of 26 CHIM participants challenged with S. Typhi or S. Paratyphi, 966 
coloured by whether they were diagnosed with typhoid/paratyphoid fever following pathogen exposure. 967 

968 
Supplementary Figure 16: Comparison of prevalence of A) succinate2priopionate and B) rnf MGCs between people 969 
who were susceptible (disease) and non-susceptible (no_disease) to challenge with S. Typhi. 970 

 971 
 972 

  973 
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Supplementary Table captions 974 

Supplementary Table 1: ANOVA analysis of alpha diversity from healthy household contacts and typhoid fever 975 
patients from all three sites 976 

Supplementary Table 2: PERMANOVA analysis of beta diversity from healthy household contacts and typhoid fever 977 
patients from all three sites  978 

Supplementary Table 3: PERMANOVA analysis of beta diversity from healthy household contacts and typhoid fever 979 
patients from all Bangladesh 980 

Supplementary Table 4: PERMANOVA analysis of beta diversity from healthy household contacts and typhoid fever 981 
patients from Malawi 982 

Supplementary Table 5: PERMANOVA analysis of beta diversity from healthy household contacts and typhoid fever 983 
patients from Nepal 984 

Supplementary Table 6: Median proportion of reads assigned to different phyla from healthy household contacts and 985 
typhoid fever patients from all three sites 986 

Supplementary Table 7: Species associated with health or disease in Bangladesh only. Positive co-efficient (coef) 987 
means the species is associated with health, negative co-efficient means it’s associated with typhoid fever. 988 

Supplementary Table 8: Species associated with health or disease in Malawi only. Positive co-efficient (coef) means 989 
the species is associated with health, negative co-efficient means it’s associated with typhoid fever. 990 

Supplementary Table 9: Full information about Metabolic Gene Clusters associated with health in both Bangladesh 991 
and Malawi. 992 

Supplementary Table 10: ANOVA analysis of alpha diversity from healthy household contacts, typhoid fever patients, 993 
and high Vi-titre participants from Malawi and Nepal 994 

Supplementary Table 11: PERMANOVA analysis of beta diversity from healthy household contacts, typhoid fever 995 
patients, and high Vi-titre participants from Malawi 996 

Supplementary Table 12: PERMANOVA analysis of beta diversity from healthy household contacts, typhoid fever 997 
patients, and high Vi-titre participants from Nepal 998 

Supplementary Table 13: Species associated with high-Vi titre compared with household controls in Malawi only. 999 
Positive coefficient (coef) is associated with health, negative co-efficient is associated with high-Vi titre. 1000 

Supplementary Table 14: Metagenome identification of AMR genes commonly identified in Salmonella Typhi per 1001 
country 1002 

Supplementary Table 15: Metagenome identification of AMR genes commonly identified in Salmonella Typhi per 1003 
participant group 1004 

Supplementary Table 16: The average weighted importance of species to random forest classification of samples as 1005 
being from control or presumptive carrier participants. 1006 

Supplementary Table 17: The correlation between the proportion of S. Typhi isolates and the proportion of 1007 
microbiome samples from each site with AMR genes to quinolones, sulphonamides and tetracycline. 1008 

Supplementary Table 18: Demographic information on CHIM participants 1009 

Supplementary Table 19: Alpha diversity ANOVA results for CHIM data 1010 

Supplementary Table 20: PERMANOVA analysis of beta-diversity amongst CHIM participants challenged with S. 1011 
Typhi and S. Paratyphi 1012 

Supplementary Table 21: Species associated with household controls vs both typhoid fever and high Vi titre from 1013 
Malawi. 1014 
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Supplementary Table 22: SGBs identified in Malawi 1015 

Supplementary Table 23: Associations between MGCs belonging to classes identified associated with household 1016 
controls compared with acute typhoid cases and no disease following challenge in the CHIM 1017 

Supplementary Table 24: MGCs significantly different between household contacts and typhoid cases in Nepal 1018 

Supplementary Table 25: MGCs significantly different between household contacts and typhoid cases in Bangladesh 1019 

Supplementary Table 26: MGCs significantly different between household contacts and typhoid cases in Malawi 1020 

Supplementary Table 27: Endemic country cohort participant information 1021 

Supplementary Table 28: metadata on CHIM samples 1022 

Supplementary Table 29: The prevalence and abundance of species in the CHIM that were associated with typhoid 1023 
fever in Malawi and Bangladesh 1024 

Supplementary Table 30: Combined results of maaslin analysis of MGC types in four cohorts (Bangladesh, Malawi, 1025 
Nepal, CHIM). Column headings indicate which cohort specific results are from mal is Malawi, bgd is Bangladesh, 1026 
nep is Nepal, and patch is the CHIM. If a result is NA, then there was insufficient of the MGC type identified in that 1027 
cohort for maaslin analysis. 1028 
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