ABSTRACT
Purpose The aim of this study was to establish a model that would enable healthcare providers to use routine follow-up measures of peritoneal dialysis to predict frailty in those patients.
Design A cross-sectional design with Logistic regression and XGBoost machine learning algorithms analysis.
Methods One hundred and twenty-three cases of peritoneal dialysis patients who underwent regular follow-up at our center were included in this study. We use the FRAIL scale to confirm the frailty of the patients. Clinical and Laboratory data were obtained from the peritoneal dialysis registration system. Factors associated with patient Frailty were identified through regularized logistic regression and validated using an XGBoost model. The final selected variables were in-cluded in the unregularized Logistic Regression to construct the model
Findings A total of 123 patients were reviewed in this study, with an average age of 61.58 years, and the median dialysis Duration was 38.5(18.07,60.53) months. 39 patients (31.71%) were female, 54 PD patients (43.9%) were classified as frail. Age, Ferritin, and TCH are the top three im-portant features labeled by the XGBoost. The results are consistent with the regularized logistic regression.
Conclusions In this study, age, total cholesterol, and ferritin are the most important features associated with the frailty in peritoneal dialysis patients. This model can be used to predict frailty status and help health monitoring of peritoneal dialysis patients.
Clinical Evidence Logistic regression and XGBoost machine learning algorithms can be used to construct a predictive model of frailty in peritoneal dialysis patients. The model could provide doctors with an objective tool to find frailty in peritoneal dialysis patients. As the data is obtained from routine examinations, the prediction model will not bring additional burden to the work of doctors or nurses.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by Wenzhou-Kean University
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee of Wenzhou Central Hospital gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors