Abstract
Objective Transcranial focused ultrasound (tFUS) is an emerging neuromodulation approach that has been demonstrated in animals but is difficult to translate to humans because of acoustic attenuation and scattering in the skull. Optimal dose delivery requires subject-specific skull porosity estimates which has traditionally been done using CT. We propose a deep learning (DL) estimation of skull porosity from T1-weighted MRI images which removes the need for radiation-inducing CT scans.
Approach We evaluate the impact of different DL approaches, including network architecture, input size and dimensionality, multichannel inputs, data augmentation, and loss functions. We also propose back-propagation in the mask (BIM), a method whereby only voxels inside the skull mask contribute to training. We evaluate the robustness of the best model to input image noise and MRI acquisition parameters and propagate porosity estimation errors in thousands of beam propagation scenarios.
Main results Our best performing model is a cGAN with a ResNet-9 generator with 3D 64×64×64 inputs trained with L1 and L2 losses. The model achieved a mean absolute error of 6.9% in the test set, compared to 9.5% with the pseudo-CT of Izquierdo et al. (38% improvement) and 9.4% with the generic pixel-to-pixel image translation cGAN pix2pix (36% improvement). Acoustic dose distributions in the thalamus were more accurate with our approach than with the pseudo-CT approach of both Burgos et al. and Izquierdo et al, resulting in near-optimal treatment planning and dose estimation at all frequencies compared to CT (reference).
Significance Our DL approach porosity estimates with ∼7% error, is robust to input image noise and MRI acquisition parameters (sequence, coils, field strength) and yields near-optimal treatment planning and dose estimates for both central (thalamus) and lateral brain targets (amygdala) in the 200-1000 kHz frequency range.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by a SPARC award from the McCance Center for Brain Health at the Massachusetts General Hospital, as well as NIH grants R01MH128421 and P41EB030006.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee/IRB of the Massachusetts General Hospital gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors