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Abstract (282 words, limit 300) 

Objective: Transcranial focused ultrasound (tFUS) is an emerging neuromodulation approach 

that has been demonstrated in animals but is difficult to translate to humans because of acoustic 

attenuation and scattering in the skull. Optimal dose delivery requires subject-specific skull 

porosity estimates which has traditionally been done using CT.  We propose a deep learning 

(DL) estimation of skull porosity from T1-weighted MRI images which removes the need for 

radiation-inducing CT scans.  

Approach: We evaluate the impact of different DL approaches, including network architecture, 

input size and dimensionality, multichannel inputs, data augmentation, and loss functions. We 

also propose back-propagation in the mask (BIM), a method whereby only voxels inside the 

skull mask contribute to training. We evaluate the robustness of the best model to input image 

noise and MRI acquisition parameters and propagate porosity estimation errors in thousands 

of beam propagation scenarios.  

Main results: Our best performing model is a cGAN with a ResNet-9 generator with 3D 

64x64x64 inputs trained with L1 and L2 losses. The model achieved a mean absolute error of 

6.9% in the test set, compared to 9.5% with the pseudo-CT of Izquierdo et al. (38% 

improvement) and 9.4% with the generic pixel-to-pixel image translation cGAN pix2pix (36% 

improvement). Acoustic dose distributions in the thalamus were more accurate with our 

approach than with the pseudo-CT approach of both Burgos et al. and Izquierdo et al, resulting 

in near-optimal treatment planning and dose estimation at all frequencies compared to CT 

(reference).  

Significance: Our DL approach porosity estimates with ~7% error, is robust to input image 

noise and MRI acquisition parameters (sequence, coils, field strength) and yields near-optimal 

treatment planning and dose estimates for both central (thalamus) and lateral brain targets 

(amygdala) in the 200-1000 kHz frequency range.  

 

 

1. Introduction 

Transcranial focused ultrasound (tFUS) is an emerging neuromodulation technique that 

may offer advantages compared to transcranial magnetic stimulation (TMS) as it can be 

focused deep in the brain with millimeter precision [1–3]. TFUS neuromodulation has been 

demonstrated in animals [4–9], but translation to humans is slow due, in part, to absorption and 

scattering in the thick human skulls that distort the beam and introduce deviations from the 

ideal, straight trajectory [10–12]. Although this problem is recognized as a major barrier to 
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tFUS dose delivery, most ongoing tFUS neuromodulation clinical trials and studies ignore it 

and instead use line-of-sight (LOS) targeting, which assumes acoustic propagation along a 

straight line, thus likely resulting in sub-optimal dose delivery. This is a significant problem 

and raises the concern that ongoing human studies using LOS may not be conclusive. Finite-

difference time domain [13–16], hybrid angle spectrum [12,17–23] or pseudo-spectral 

modeling [24–26] have been used for modeling of acoustic propagation through bone, however 

all those tools require individualized maps of the speed-of-sound and acoustic attenuation 

parameters as inputs. Those have traditionally been estimated using CT [27–29], but this can 

be difficult to justify as this increases radiation exposure and introduces cross-modality 

registration errors when using MRI for neuronavigation.  

Estimation of acoustic maps from MRI can be done using zero echo-time (ZTE) MRI which 

mimics CT contrast and works well but requires specialized sequences [30–33]. A simpler 

approach is to generate a so-called pseudo-CT (pCT) map by non-linear registration of a 

population-average CT atlas into the subject’ frame, which only requires a standard clinical 

T1-weighted (T1w) MR image [34,35].  The main issue with this population-average approach 

is that it ignores large variations of bone porosity and density observed within and across 

individuals, see for example Fig. 1 and Ref. [11]. A more individualized approach consists in 

using deep learning (DL) of CT intensities from MR images. Liu et al. [36]  proposed a 3D 

cGAN UNet for MRI-to-CT translation which they evaluated by reporting skull density ratio 

(SDR) as well as acoustic beams examples computed with Kranion [37] and k-wave [25]. 

Miscouridou et al. [38] proposed a similar model, however trained on ZTE MRI images, which 

they found was superior to T1w-based training for the task of tFUS beams estimation via k-

wave. This echoes previous results by Su et al. [39], who deployed a 2D UNet for the estimation 

of CT Housfield units from ZTE MR images which they evaluated in estimations of SDR and 

beam profiles. More recently, Yaakub et al [40] and Koh et al [41] proposed similar 3D cGAN 

UNet models for estimation of Hounsfield units from T1w MR images, which they successfully 

evaluated in a limited number of k-wave simulations.  

In this work, we propose a DL strategy for subject-specific estimation of the skull porosity 

from T1w MR images for the specific goal of improving the placement of focused transducers 

in tFUS neuromodulation studies. Our network is similar to that of Koh et al. and Yaakub et 

al., however with small but important differences. First, we optimize most aspects of the 

network (network architecture, input size/dimensionality, multichannel inputs, data 

augmentation, loss functions) in order to optimize performance. Second, we introduce 

backpropagation in the mask (BIM), a backpropagation approach that only considers pixels 
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located inside the skull mask during training in an effort to focus the DL degrees-of-freedom 

on those pixels of maximum importance. In addition to improving performance, we show that 

limiting the estimation process to the skull mask makes the estimation robust to input image 

noise and variations in the various MRI acquisition parameters (sequence, coils). We compute 

the skull mask using SAMSEG [42], which is itself a robust method. As a results, the final 

model works even in the presence of very high noise in the input image and using T1-weighted 

MR images acquired at different field strength and using different sequences parameters and 

receive coils than for the training and validation sets. We evaluate our approach in simulations 

of thousands of transducer positions placed around the scalp of the test subject at 250, 500 and 

1000 kHz (these are common frequencies used for neuromodulation). We distribute our code 

and trained weights online in an effort to disseminate our approach and improve reproducibility 

(https://github.com/bastpg). 

 

 

Fig. 1. CT, porosity and T1-weighted MRI image sections for 3 of the 15 subjects 

included in this study. The porosity map is derived from CT as explained in the text. Red 

arrows point to high-porosity features corresponding to voxels containing primarily bone 

marrow, which are visible on both the porosity map and the saturated T1-weighted MR 

image. In other words, the T1-weighted MR image contain the information necessary to 

extract the porosity information in a patient-specific manner but doing so is not 

straightforward because of complex MRI contrast around the grey matter, white matter and 

the dura. 
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2. Materials and methods 

 

2.1 Network  

Fig. 2 shows various DL configurations tested in this work. We used a conditional 

generative adversarial network (cGAN) architecture with UNet and ResNet generators and a 

patchGAN discriminator [43] (Fig. S1). We trained three 2D UNets for input sizes 256x256 (7 

downsampling blocks), 128x128 (6 downsampling blocks) and 64x64 (5 downsampling 

blocks), as well as a 3D UNet for 64x64x64 inputs (Fig. 2B). We also trained a ResNet with 9 

residual blocks (ResNet-9) both for 2D (256x256) and 3D inputs (64x64x64). Porosity outputs 

have the same size and dimensionality as the T1w image inputs, and the patchGAN 

discriminator was adapted to the size and dimensionality of those inputs/outputs. In addition to 

the MRI T1w input, the 256x256 2D Unet was also trained with an additional pCT channel 

(Izquierdo et al.) to assess whether this additional information improves convergence and 

prediction accuracy (Fig. 2C). We also implemented auto-context modeling whereby 

successive cGANs were daisy-chained together by using the output of the previous model as a 

channel input to the next, since this has been shown to be beneficial in some applications (Fig. 

2D) [44,45]. 

Next, we quantified the impact of the following loss functions: L1, L2, L1+L2, gradient 

difference loss (GDL) and perceptual loss. GDL penalizes difference between the x, y and z 

gradients of the estimated output and training reference, which has been shown to penalize 

edge discrepancies and tends to yield sharper image results [46]. Perceptual loss (Fig. 2E) was 

computed from intermediary features of the discriminator down-sampling layers thus yielding 

a richer, more complete picture of the differences between estimation output and reference 

[47]. Finally, we assessed backpropagation in the mask (BIM, Fig. 2F), whereby only pixels 

located inside the skull mask are included in the backpropagation process in an effort to focus 

the network’ degrees-of-freedom on the most important pixels, since pixels outside the mask 

have a trivial porosity value of one. The skull mask itself was estimated from the T1w MRI 

input using SAMSEG/Freesurfer [42]. For discriminator loss, we use an element-wise binary-

cross entropy error term applied to the output of patchGAN. 
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Fig. 2. Deep learning configurations tested in this work. A: The base DL model used 

throughout this work is a conditional generative adversarial network (cGAN) with pixel and 

discriminator losses. All other models are based on this cGAN, with variations emphasized in 

red. B: cGAN with cropped inputs (size tested: 64x64, 128x128 and 256x256 for 2D, 

64x64x64 for 3D). Cropping inputs yields a smaller generative network and increases the size 

of the training dataset, thus reducing overfitting. C: Use of the pseudo-CT as an additional 

input channel. D: Auto-context models are obtained by daisy-chaining cGANs together, 

which may improve the accuracy of the estimation at the last stage. E: Addition of perceptual 

loss to the backpropagation, in addition to the cGAN pixel and discriminator losses. F: 

Backpropagation in the mask only includes pixels located inside the skull mask in the 

backpropagation process. This is done in an effort to focus the degrees-of-freedom of the 

network on estimation of skull voxels, since porosity outside the mask is known and trivial 

(=1). 

 

2.2 Training, validation and testing 

We used pairs of MRI and CT scans acquired in 15 different subjects for training, validation 

and testing [34]. We followed the basic rule of data segregation and used separate subjects for 

training (13 subjects), validation (1 subject) and testing (1 subject). Note that a single subject 

yields many inputs and outputs in the form of multiple slices, orientations (transverse, coronal, 

sagittal) and 3D patches. T1w MRI volumes were 1 mm isotropic MPRAGE acquired on a 3T 

Siemens ‘Skyra’ scanner (Siemens Healthineers, Erlangen Germany) minimally processed 

with intensity shading removal and interpolation in a standard 256x256x256 coordinate frame 

with 1 mm resolution [48]. The CT volumes were clinical scans acquired on a LightSpeed 

system (GE Healthcare, Chicago USA) with 0.45 mm resolution in-plane (transverse) and 2.5 
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mm slice thickness. Those were aligned and interpolated on the same 256x256x256 1 mm 

isotropic MRI grid using rigid registration [49]. Pseudo-CTs (pCT) were also generated for 

each subject following Ref. [34,35]. CT and pCT Hounsfield units (HU) were then converted 

into porosity maps 𝑝 using the formula 𝑝 = 1 − 𝐻𝑈/1000 followed by normalization to [0;1] 

[50]. Slices below the nose were not included in training, validation and testing, since these 

locations are not relevant for tFUS. All inputs were normalized to [-1;1], thus matching the 

range of the tanh activation function used in the first layer of the networks used in this work.  

Models were trained using a Tesla P100 PCIe GPU card with 16 GB of RAM using Adam 

optimization with learning rate = 0.0002, 𝛽1 = 0.5, 𝛽2 = 0.999 and 𝜖 = 10−7. All dropout 

layers were assigned a rate of 0.5 and the number of samples per epoch was set to 6149. 

Drawing with discount 473 random slices was used for both the validation and test subjects.  

 

2.3 Volume reconstruction from patch outputs 

When using cropped inputs, whole field-of-view outputs were reconstructed by tiling 

individual cropped outputs. 3D models of size 64x64x64 were obtained by cropping the 

original 256x256x256 input with a stride of 32 in all three directions. Reconstructions were 

obtained by averaging the cropped volumes in their intersections. For the 2D 256x256 models, 

transverse, coronal, and sagittal orientations were estimated independently and then averaged 

together. 

 

2.4 Robustness to noise and MRI acquisition parameters 

We evaluated the robustness of our approach to noise by adding increasing levels of 

Gaussian noise to the real and imaginary parts of the input MR images, thus resulting in the 

typical Rician noise distribution of MR magnitude data. The proposed DL estimation was then 

run on those datasets, including the SAMSEG segmentation step used to extract the skull mask. 

We also ran the proposed approach on six subjects from the 3 Tesla Human Connectome 

Project (young adult database, MGH sub-folder) [51] and 1.5 Tesla CERMEP [52] open-source 

repositories. Details of the MRI acquisitions (sequences, coils), which can be found in the 

Connectome and CERMEP references, were different from those used for the training, 

validation and test data. Importantly, the HCP data was acquired at 3T while the CERMEP data 

at 1.5T (training, validation and test images were acquired at 3T).  

 

2.5 Acoustic simulations 
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The scalp surface of the test subject was meshed using a combination of MATLAB and 

iso2mesh [53] routines, resulting in 4868 faces after removal of mesh elements located below 

the ear and nose. A 61 mm aperture diameter, 80 mm focal depth focused transducer was 

simulated at the center of each face and oriented perpendicular to the scalp along the face’ 

normal. Acoustic simulations were performed at 200 kHz, 500 kHz and 1000 kHz using the 

well validated open-source hybrid angular spectrum solver mSOUND, which models acoustic 

propagation in high-contrast, heterogenous scattering media in seconds [22,23]. Those 

frequencies were chosen as they span the range of operating frequencies used in 

neurostimulation studies. The inputs of those simulations were acoustic maps derived from 

porosity maps  𝑝  computed from CT (reference), our DL approach and pseudo-CT methods as 

implemented by Burgos et al. [35] and Izquierdo et al. [34] as follows: 

𝑥 = 𝑥𝑏𝑟𝑎𝑖𝑛𝜓 + 𝑥𝑐𝑜𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑜𝑛𝑒(1 − 𝜓), 

where 𝑥 is a generic acoustic parameter standing for the speed-of-sound (𝑐), attenuation (𝛼) or 

density (𝜌). The extreme values of those parameters corresponding brain and cortical bone 

tissues were extracted from the IT’IS Foundation acoustic parameter database [54]: 𝑐𝑏𝑟𝑎𝑖𝑛 =

1546 m/s and 𝑐𝑐𝑜𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑜𝑛𝑒 = 3514 m/s, 𝛼𝑏𝑟𝑎𝑖𝑛 = 0.36 dB/(MHz ∙ cm) and 𝛼𝑐𝑜𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑜𝑛𝑒 =

7.74 dB/(MHz ∙ cm), 𝜌𝑏𝑟𝑎𝑖𝑛 = 1046 kg/𝑚3 and 𝜌𝑐𝑜𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑜𝑛𝑒 = 1908 kg/𝑚3. 

mSOUND propagates the acoustic energy along the z-axis of the input volume, therefore 

porosity maps were interpolated in the frame of the transducer using the rigid transformation 

aligning the transducer normal onto the transducer’ axis. mSOUND simulations were 

performed on a regular grid with resolution 𝜆 5⁄ , where 𝜆 is the wavelength in water, thus 

resulting in longer simulations at high frequencies. Acoustic intensity maps were then 

interpolated back into the subject’ frame for all transducer positions. Finally, scalp maps were 

created by assigning to each face of the scalp mesh the total acoustic intensity deposited in the 

target brain region under study, in this work the left amygdala and the left thalamus.  

 

 

3. Results 

3.1 DL modifications that improved porosity estimates  

Fig. 3 & 4 summarize the results of our systematic network optimization approach: Fig. 3 

shows the DL features that had a significant impact on the accuracy of porosity estimates and 

Fig. 4 shows those that did not. Specifically, Fig. 3A shows that 2D ResNet with a 256x256 

MRI T1w input significantly outperformed 2D UNet, which was true whether or not pCT was 
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used as an additional input channel. We conclude that ResNet outperforms UNet for our 

estimation task and that pCT does not add significantly more information to the T1w input. Of 

all the network input sizes considered in this work, Fig. 3B shows that the highest performing 

configuration is 3D ResNet with 64x64x64 input patches (this result is consistent across all the 

performance metrics: MAE, MSE, PSNR and SSIM, see Table S1). This indicates that there 

may be more contextual information in small 3D patches than in larger 2D slices for the 

estimation of porosity. Fig. 3C shows that data augmentation significantly improved the 

estimation of porosity maps, although it is interesting to note that it is the inclusion of rotated 

version of the inputs that helped, not mirror flips. Finally, Fig. 3D shows that backpropagation 

in the mask (BIM) yielded a moderate but significant performance improvement, a result that 

is consistent across most other metrics (Table S2).  

 

Fig. 3. Violin plots of the mean absolute error (MAE) in the test set for various DL variations 

that were found to significantly impact the accuracy of porosity estimates. The bold numbers 

are the mean MAE for each variation, while the italic numbers above and below indicate the 

99th and 1st percentiles of the error distribution, respectively. The grey boxes indicate the 

implementation variant retained in the final model. A: Impact of network architecture and 

input type. MRI + pCT indicates that both the MRI and the pseudo-CT (Izquierdo et al.) are 

used as input to the models (two channels). All inputs are 2D with sizes 256x256. B: Impact 

of input size and dimensionality. The 3D ResNet with 64x64x64 inputs has the best 

performance, therefore we retain it in the final model. C: Augmenting the data with rotations 

systematically improved the robustness of the estimation, whereas image flips had minimal 

impact. Nevertheless, we chose to perform both rotations and flips during training of the final 

model (comparisons performed for the 2D 256x256 UNet). D: Limiting the backpropagation 

from pixels in the skull mask improved the error distribution, therefore we retained this 

strategy in the final model (comparisons performed for the 2D 256x256 Unet). 
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3.2 DL modifications that did not improve porosity estimates 

Fig. 4A shows that using the square root of the porosity as the estimation target, which we 

thought could help boost small porosity values that may otherwise be under-represented in the 

MAE metric, did not significantly affect performance (this result is robust across all metrics, 

see Table S3). In Fig. 4B, the choice of the loss function beyond the common L1 and L2 norms 

was also found to have little impact. Specifically, the use of GDL and perceptual losses was 

found to only have a minor impact on final estimates, a result that is consistent across all metrics 

(Table S4). Finally, auto-context modeling was not found to improve estimates, therefore we 

did not retain it in the final implementation (Fig. 4C). 

 

Fig. 4. Violin plots of the mean absolute error (MAE) in the test set for various DL variations 

that did not significantly impact the accuracy of porosity estimates. The bold numbers 

indicate the mean MAE for each variation, while the italic numbers above and below indicate 

the 99th and 1st percentiles of the error distribution, respectively. The grey boxes indicate the 

implementation variant retained in the final model. A: Impact of porosity v square-root of the 

porosity as target estimation metric. Using the square-root of the porosity theoretically boosts 

small porosity values in the training process but in practice does not affect the training error 

much. B: All loss functions evaluated in this work yielded similar network estimation error 

across the test set, therefore we used a simple L1+L2 norm in the final implementation. C: 

Auto-context modeling did not improve estimation accuracy for our task, therefore we did not 

retain this technique in the final model (ACM0). 

 

3.3 Training set size 
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Fig. 5 shows that the final training error for the 2D UNet 256x256 plateaued when using more 

than 9 subjects in the training set. This indicates that the size of the training set used in this 

work (13 subjects) is well matched to the complexity of the DL model.  

 

Fig. 5. Impact of training set size on model performance. A: Validation curves for the 

baseline model (2D UNet, 256x256 inputs) trained with an increasing number of subjects. 

There are N=15 subjects in totals, one is set aside for validation while one is set aside for 

testing. B: Violin plot of the MAE error in the training set, as a function of the number of 

subjects in the training set. There is no significant performance improvement for N greater 

than 9, suggesting that using N=13 is well matched to the complexity of the model. 

 

3.4 Proposed model 

Based on the tests summarized in Figs. 3 & 4, we propose the following model: 3D ResNet 

cGAN with 64x64x64 input patches, L1+ L2 loss, backpropagation in the mask and data 

augmentation during training. Fig. 6 shows MAE error distributions in the test dataset for 

pix2pix, an out-of-the-box 2D 256x256 UNet cGAN [43], the pCT approach of Izquierdo et al. 

and our proposed DL. pCT and pix2pix have similar average error ~9.4%, which is reduced to 

6.9% using our optimized DL approach (a 26% reduction). Figs. 7 and S2 shows that although 

the average error of pCT is 9.4%, the error can be as high as 17% in some regions of the input 

volume. Using pix2pix resolves some of those problematic areas, as this strategy uses MRI-

specific information whereas pCT only uses a population-average CT template. Our optimized 
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DL approach yields even better overall estimation with few problem areas, although with a 

slight tendency to overestimate the porosity.  

 

Fig. 6. Final model performance, compared to pCT-based porosity estimation of Izquierdo et 

al. and the generic pix2pix GAN. 

 

 

Fig. 7. Representative examples of porosity maps estimated with the pCT (Izquierdo et al.), 

pix2pix, proposed DL approaches and compared to CT (reference). Also shown on the left 

are whole-FOV and zoom MRI slices, for reference. 

 

3.5 Robustness to noise and sequence parameters 

Fig. 8 shows porosity estimates in the test subject as a function of input image noise. Those 

results show that the proposed approach is robust to even very high noise levels in the T1-

weighted image inputs. Indeed, the “very high noise” level corresponds to an SNR of 4 in the 

grey matter, which is extremely high compared to typical clinical image quality and is modeled 

here as an extreme test of the method.  
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Fig. 8. Performance of the proposed DL approach as a function of noise level in the input 

MRI image. The moderate, high and very high noise scenarios correspond to grey matter 

SNR values of 31, 10 and 4, respectively. For each noise level, we show zoomed panels of 

the noisy MRI inputs and the porosity image outputs. The mean absolute error (MAE) of 

porosity estimates is equal to 8.4%, 8.4% and 9.3% in the three noise scenarios, indicating 

that our proposed DL approach is robust to image noise. 

 

Fig. 9 also shows that porosity estimation worked well even for subject data from the HCP and 

CERMEP database which were not present in the training/validation/test databases and were 

acquired with different acquisition parameters. This includes different sequence parameters, 

different coils and even different field strength for CERMEP. Estimations are reasonable in all 

subjects, specifically one can observe the expected high porosity values in large marrow-filled 

pores visible on the T1-weighted MRI inputs (Fig. 9, green arrows). Importantly, there were 

no “catastrophic failures”, where the estimation completely failed, for any of the HCP and 

CERMEP subjects, which can occur with other tools such as the pseudo-CT estimation 

approach of Burgos et al. The robustness of our approach to MRI acquisition parameters is 

likely due to the fact that estimation is restricted to inside the skull mask, which can be 

estimated robustly using SAMSEG/Freesurfer.  
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Fig. 9. Porosity estimation using the proposed DL applied to subjects in the open-source 

Connectome and CERMEP databases, which were not included in the training, validation and 

testing. T1-weighted images from those databases were acquired on different MRI systems 

and with different sequence parameters than the inputs used for training, validation and 

testing. Estimates are reasonable for all subjects, with high porosity values corresponding to 

marrow-filled pores that are clearly visible on both the MRI and porosity images (green 

arrows). 

 

 

3.6 Impact on acoustic simulations 

Simulation of the 4868 transducer locations in the test subject using mSOUND took 8 min, 

32 min and 121 min at 200 kHz, 500 kHz and 1000 kHz, respectively, with a parallelization 

factor of 20. Increasing computation time at increasing frequency is due to the increasing 

spatial resolution requirement to properly sample the decreasing wavelength (see Methods). 

Left thalamus scalp maps computed using CT-, DL-based and pCT-based porosity estimates, 

shown in Fig. 10, have similar relative distributions but different absolute amplitudes. The pCT 

approach of Izquierdo et al. led to optimal transducer position estimates in close agreement 

with those obtained using the reference CT data as well as our proposed DL approach. 

However, our DL approach yielded more accurate absolute dose estimates than when using the 

pCT method of both Burgos et al. and Izquierdo et al.  
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Fig. 10. Scalp maps of the acoustic intensity deposited in the left thalamus of the test subject 

(arbitrary units), computed using mSOUND at 200 kHz, 500 kHz and 1000 kHz using 

porosity maps derived from CT (reference), the proposed DL approach and the pseudo-CT 

methods of Burgos et al. and Izquierdo et al. 

 

 

4. Discussion: 

We optimized a deep learning (DL) strategy for estimation of skull porosity from MRI T1-

weighted images, and deployed this approach for subject-specific neuronavigation of 

transcranial focused ultrasound (tFUS). Our approach is based on the observation that marrow-

filled pores in the skull are visible on conventional T1- and T2-weighted MRI clinical images 

(Fig. 1). Although conventional MRI sequences do not provide skull contrast due to the short 

T2 of bone, most surrounding tissues are visible thus effectively yielding an inverted skull 

mask with the correct shape and thickness. Acoustic scattering in the head is largely determined 

by the skull shape, thickness and porosity; which led us to hypothesize that conventional T1w 

MR images contain all the information necessary for subject-specific acoustic simulations and 

that this information could be extracted using DL. An important aspect of our work is that we 

optimized the DL model by systematically assessing various implementation aspects for our 

specific estimation task. In contrast, most previous work implicitly assumed adequacy and 

optimality of architectures and implementation details. Among the DL strategies implemented 
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and tested here, we found that the most impactful were the use of ResNet-9 compared to UNet 

(23% improvement in the MAE metric), 3D 64x64x64 input patches over 2D 256x256 slices 

(32% MAE improvement) and data augmentation with rotations and image flips (27% MAE 

improvement). Another strategy that yielded significant but smaller improvement was the use 

of backpropagation in the mask (BIM, 6% MAE improvement), a technique proposed in this 

work that consists in only including voxels falling in the skull mask during backpropagation. 

We hypothesized that this would improve accuracy and convergence as this focuses the 

network degrees-of-freedom on the voxels of importance as voxels outside the mask have a 

trivial porosity value equal to one. When testing BIM, we assessed several implementation 

approaches with and without masking the input and/or output and found that the best approach 

consists in not masking the input, but masking the output. This is likely because masking the 

input maximizes the amount of information passed to the network, while masking the output 

emphasizes learning on skull voxels only.  

The best performing network (i.e., proposed approach) is a cGAN with a ResNet-9 

generator and a patchGAN discriminator, 3D input patches of size 64x64x64 (1 mm isotropic), 

L1+L2 losses, backpropagation in the mask and data augmentation with rotations and image 

flips. This model improved estimation of the porosity map by 27% (MAE metric) compared to 

both pseudo-CT and pix2pix, a general pixel-to-pixel translation cGAN that we used as the 

baseline for our model [43]. However, those average errors do not tell the full story. As can be 

observed in Fig. 6, the tail of the error distribution associated with our DL approach is 

significantly shorter than tails associated with the pCT approach of Izquierdo et al. and pix2pix, 

thus indicating that outliers with estimation errors greater than 10% are largely resolved with 

our approach. This can be observed in Figs. 7 and S2, which show that errors associated with 

pCT-Izquierdo in small regions of the skull can be as high as ~17%, which is largely resolved 

using our DL approach (~6% error for the same regions). This represents a 25% improvement 

over pix2pix and a 65% improvement compared to pCT. We point out that atlas-based pseudo-

CT approaches such as those by Izquierdo et al. and Burgos et al. were not designed for 

individualized porosity estimations and instead reflect, by definition, average distributions 

conserved across subjects. Those methods were developed for attenuation correction of 

positron emission tomography data, a task for which they were shown to be adequate as 

individualized porosity estimation is not important in this case [34]. This work shows that atlas-

based pseudo-CT approaches are less appropriate for acoustic simulation since such 

simulations require accurate subject-specific porosity estimates that can differ significantly 

from the population average.  
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The DL strategies that we found did not significantly affect the results included using pCT 

as an additional input channel, using the square root of the porosity as the learning target 

(instead of the porosity); the specific loss function used during training and auto-context 

modeling (ACM). The fact that enriching the input with pCT or previous instances of the model 

(ACM) did not improve learning is somewhat at odd with previous work [46], and may 

therefore be specific to our estimation task. Finally, although our dataset was limited to 15 

subject pairs of MRI and CT-based porosity 3D volumes, our results indicate that adding 

subjects beyond the first 9 did not significantly improve estimation results (Fig. 5). This is 

likely due to the fact that we divide each subject’ volumes in dozens of small 3D input patches, 

which decreases network complexity while increasing the size of the training set, and that we 

limit training in the skull mask (BIM), which focuses learning in the region of maximum 

importance. 

An important result of this work is that the proposed DL approach was found to be robust 

to high levels of noise in the input images as well as varying MRI acquisition parameters, 

including sequence parameters, coils and even field strength. We attribute some of this 

robustness to our limitation of the estimation process to voxels inside the skull mask (BIM). 

Since estimation of the skull mask using SAMSEG/Freesurfer is itself a robust process, BIM 

acts as a sort of regularization by focusing the network solely on voxels directly associated 

with the estimation tasks (i.e. those in the skull). This removes the influence of voxels in the 

brain and the cerebrospinal fluid that, in the best of cases, likely have very little impact of the 

final estimate and, in the worst cases, would channel noise and unexpected contrast variation 

in the network output. In other words, BIM reduces overfitting and makes the estimation more 

robust by forcing the network to focus on voxels directly related to the estimation task. As a 

result, we believe that our trained network reason can be broadly useful to investigators in the 

field and therefore share it freely for download on GitHub (https://github.com/bastpg). 

Relative distributions of the porosity were well estimated by our tool, however absolute 

porosity values were slightly overestimated compared to the reference values derived from CT. 

This led to a 5-22% overestimation of the dose in the brain in our acoustic simulations (error 

increases with frequency). It would be simple enough to correct this systematic bias using a 

global correction factor, however such inaccuracy is likely benign compared to the much 

greater errors introduced by imperfect porosity-to-acoustic parameter scaling. Indeed, 

published CT-to-speed-of-sound scaling laws have a 37-72% dispersion in the Hounsfield 

value range corresponding to cortical bone, while CT-to-acoustic attenuation laws have a 164-

200% dispersion in the relevant range [12]. The cause of the large variability in the published 
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Hounsfeld-to-acoustic parameter scaling relationships is currently unknown, although it is 

clear that some of it is caused by normal variations across subjects. In any case, such large 

variability likely leads to significant errors in the estimation of acoustic parameter which in 

turn affect all acoustic simulations, irrespective of the specific modeling tool employed. One 

possible solution could be to combine our DL-based porosity estimation approach with a 

limited number of ultrasound transmission measurements, since such measurements contain 

subject-specific information about the speed-of-sound (wave packet delay) and acoustic 

attenuation (transmission signal amplitude). We are currently investigating this approach, 

which well beyond the scope of the present work however.  

We evaluated the impact porosity estimation errors on tFUS neuronavigation and dose 

estimation by modeling thousands of transducer positions on the scalp of a test subject using 

acoustic parameter maps derived from CT, pCT and the proposed DL approach. We summarize 

those simulations using ‘scalp maps’ showing the total acoustic energy deposited in the target 

brain region of interest for thousands of test transducer positions on the scalp of the subject. 

Scalp maps derived with our DL approach were close to those derived from CT data (both the 

relative and absolute dose distributions), and errors were larger with the pCT methods of 

Burgos et al and Izquierdo et al, which, as explained in a previous paragraph, is to be expected 

as atlas-based pCT methods cannot reflect individual porosity variations differing significantly 

from the population average. Our DL approach and the pCT approach of Izquierdo et al. yielded 

optimal transducer placement estimates that were very close to the reference treatment plan 

computed using CT data, although our DL approach yielded more accurate estimates of the 

absolute dose for all transducer locations. The treatment plan computed using the pCT 

approach of Burgos et al. yielded both greater transducer placement and absolute dose 

estimation errors, which shows that the implementation details and reference atlases used in 

different pCT methods have significant impact on tFUS simulations.  

A limitation of our approach is that we only use T1-weighted MR images as inputs, 

however T2-weighted images also have positive bone marrow contrast and using them as 

additional input channels could further improve porosity estimates. In particular, our approach 

had a tendency to overestimate the porosity (i.e. errors are almost always an overestimation), 

which may be mitigated by using an additional T2-weighted input channel.  
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5. Conclusion 

In this study we optimized a deep learning (DL) approach for estimation of skull porosity 

from T1-weighted MR input images. We found that using a ResNet generator was beneficial 

(versus UNet) along with using 3D input patches of size 64x64x64 (versus 2D patches of size 

256x256 and 128x128). We also found that backpropagation in the mask (BIM), a technique 

that we propose here and consists in only including skull pixels in the backpropagation process, 

also improved the estimation. In contrast, using an additional pseudo-CT input channel and 

daisy-chaining DL networks (auto-context modeling) did not improve the estimation. We also 

found that the specific choice of the loss function had a small impact on model performance, 

and therefore use a simple L1+L2 loss to train the final model. The proposed model estimates 

porosity maps with ~7% error, which yields near-optimal tFUS navigation transducer 

placement compared to CT-based modeling (reference) in the 200-1000 kHz frequency range 

as assessed using scalp maps of the acoustic dose delivered in the left amygdala and thalamus. 

The proposed approach is robust to input image noise and yields reasonable results for T1-

weighted images acquired with a range of sequence parameters, coils and even field strengths, 

which makes it broadly useful. We share the trained weights on GitHub for maximum impact 

and dissemination. 
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