Abstract
Background and objectives The most common autosomal-dominantly inherited spinocerebellar ataxias (SCA), SCA1, SCA2, SCA3 and SCA6, account for more than half of all SCA families. Disease course is characterized by progressive ataxia and additional neurological signs. Each of these SCAs is caused by a CAG repeat expansion, leading to an expanded polyglutamine stretch in the resulting type-specific protein. To comparatively investigate determinants of disease progression, we analyzed demographic and genetic data and three-year clinical time courses of neurological symptoms. The aim was to provide tailored marker candidates and prediction models to support type-specific clinical monitoring and trial design.
Methods To analyze relationships among the different neurological symptoms, we examined co-occurrence patterns of deterioration events. Predicting disease progression was treated as a survival analysis problem.
Results The data set contained 1538 subjects from five different longitudinal cohorts and 3802 visits. The pattern of neurological symptoms that showed progression varied with the SCA type. Mining of the progression data revealed the Scale for the Assessment and Rating of Ataxia (SARA) sum score to be the most representative descriptor of disease progression, reflecting progression of the majority of the other included symptoms. We trained models for predicting the progression of each neurological symptom for each SCA type from genetic features, age and symptoms at the baseline visit. The most universal predictors included the SARA sum score, gait and the CAG repeat length of the expanded allele. Finally, deterioration in disease staging was studied in detail: For the milestones of deterioration, (i) the need to use walking aids and (ii) the requirement to use a wheelchair, we discovered common as well as diverging predictive markers. For clinical interpretability, a decision tree was built to indicate the probability of progression within 3 years in dependence of the top predictive features.
Discussion Data-driven approaches are potent tools to identify the main contributing features of progression prediction. Progression events for the disease stage were predictable from the baseline neurological status. Remarkably, a limited number of features had predictive importance, and only few were shared among all four SCA types, including gait and the SARA sum score, confirming the need for type-specific models.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was funded by the National Ataxia Foundation (NAF). JF received funding by the iBehave Network, sponsored by the Ministry of Culture and Science of the State of North Rhine-Westphalia and as a Fellow of the Hertie Network of Excellence in Clinical Neuroscience.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee/IRB of the University Hospital Bonn gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.