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Abstract 
Background and objectives: The most common autosomal-dominantly inherited spinocerebellar 
ataxias (SCA), SCA1, SCA2, SCA3 and SCA6, account for more than half of all SCA families. Disease 
course is characterized by progressive ataxia and additional neurological signs. Each of these SCAs 
is caused by a CAG repeat expansion, leading to an expanded polyglutamine stretch in the 
resulting type-specific protein. To comparatively investigate determinants of disease progression, 
we analyzed demographic and genetic data and three-year clinical time courses of neurological 
symptoms. The aim was to provide tailored marker candidates and prediction models to support 
type-specific clinical monitoring and trial design. 
Methods: To analyze relationships among the different neurological symptoms, we examined co-
occurrence patterns of deterioration events. Predicting disease progression was treated as a 
survival analysis problem. 
Results: The data set contained 1538 subjects from five different longitudinal cohorts and 3802 
visits. The pattern of neurological symptoms that showed progression varied with the SCA type. 
Mining of the progression data revealed the Scale for the Assessment and Rating of Ataxia (SARA) 
sum score to be the most representative descriptor of disease progression, reflecting progression 
of the majority of the other included symptoms. We trained models for predicting the progression 
of each neurological symptom for each SCA type from genetic features, age and symptoms at the 
baseline visit. The most universal predictors included the SARA sum score, gait and the CAG repeat 
length of the expanded allele. Finally, deterioration in disease staging was studied in detail: For 
the milestones of deterioration, (i) the need to use walking aids and (ii) the requirement to use a 
wheelchair, we discovered common as well as diverging predictive markers. For clinical 
interpretability, a decision tree was built to indicate the probability of progression within 3 years 
in dependence of the top predictive features. 
Discussion: Data-driven approaches are potent tools to identify the main contributing features of 
progression prediction. Progression events for the disease stage were predictable from the 
baseline neurological status. Remarkably, a limited number of features had predictive importance, 
and only few were shared among all four SCA types, including gait and the SARA sum score, 
confirming the need for type-specific models. 
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Introduction 
 
Spinocerebellar ataxias (SCAs) are rare neurological diseases with autosomal dominant 
inheritance and a clinical onset in adult life. Patients suffer progressive loss of balance and 
coordination accompanied by slurred speech. By now, more than 50 genetically different SCAs are 
known, among which SCA1, SCA2, SCA3 and SCA6 belong to the most common. 1, 2 Each of these 
SCAs is caused by a translated CAG repeat expansion in the respective gene resulting in an 
expanded polyglutamine (PolyQ) in the protein. 1 Disease-modifying therapies applying gene 
silencing strategies are currently developed, and first human safety trials with antisense 
oligonucleotides have started. A comprehensive knowledge of the disease course is a core 
requirement for the planning and design of clinical trials. Disease course of SCAs has been studied 
mainly with two clinical rating assessments, the Scale for the Assessments and Rating of Ataxia 
(SARA), which provides a measure of ataxia severity 3, and the Inventory of Non-Ataxia Signs (INAS) 
4, which assesses neurological symptoms other than ataxia, such as e.g. spasticity, rigidity or 
dysphagia. 5-7 A prediction of disease progression based on the current status could improve 
stratification of patients for clinical trials as well as patient counselling.  The main objective of this 
work was to develop a model that predicts progression in SCA1, SCA2, SCA3, and SCA6 based on 
demographic data, CAG repeat length and baseline clinical measures. We were particularly 
interested in predicting risks of reaching milestones of high patient relevance. To this end, we 
compiled longitudinal data of more than 1500 SCA1, SCA2, SCA3 and SCA6 mutation carriers from 
four European and one US SCA cohorts. For the analysis, we chose a purely data-driven approach. 
8 
 

Methods 
 
SCA patient cohorts 
We compiled clinical data from four European observational studies in the most common SCAs, 
namely EUROSCA (N=506) 6, 9, RISCA (N=138) 7, 10, ESMI (N=310) 11 and SCA-Registry (N=265), as 
well as the US cohort CRC-SCA (N=337) 5. All participants were assessed using a cohort-specific, 
but largely overlapping standardized protocol that included demographic data and genetic 
characteristics, such as age and CAG repeat length. Clinical assessments included SARA 3 (to grade 
ataxia severity) and INAS 4 (to indicate non-ataxia symptoms). SARA consists of eight rated items, 
namely gait (0-8), stance (0-6), sitting (0-4), speech (0-6), finger chase (0-4), nose-finger test (0-4), 
fast alternating hand movements (0-4) and heel-shin slide (0-4), yielding a sum score ranging from 
0 (absence of ataxia) to 40 (most severe ataxia). INAS assesses the presence vs. absence of the 
following neurological signs: hyperreflexia, areflexia, extensor plantar reflex, spasticity, paresis, 
muscle atrophy, fasciculations, myoclonus, rigidity, chorea/dyskinesia, dystonia, resting tremor, 
sensory symptoms, urinary dysfunction, cognitive dysfunction and brainstem oculomotor signs, 
the latter comprising ophthalmoparesis on horizontal and/or vertical gaze and/or slowing of 
saccades. The INAS count gives the number of neurological signs as a global measure of non-ataxia 
involvement, ranging from 0 to 16. In addition, the following INAS items were assessed: downbeat 
nystagmus on fixation, gaze evoked-nystagmus horizontal and vertical testing, square wave jerks 
on fixation, hypo- and hypermetric saccades, broken up smooth pursuit, visual acuity, diplopia as 
well as dysphagia (the latter two with ranges 0 to 3, all other 0/1). 4 Disease stages were defined 
following Klockgether et al. 12 as 0 = no gait difficulties, 1 = ataxic, defined by the presence of gait 
difficulties, 2 = loss of independent gait with the need to use walking aids, 3 = confined to 
wheelchair. The US cohort used a more fine-grained staging system, that was mapped onto the 
stages 0 – 3 as done previously 13. A comprehensive list of items as well as an overview of the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308162doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308162
http://creativecommons.org/licenses/by-nc-nd/4.0/


mapping can be found in the Supplementary data (Table S2). We performed a Kruskal-Wallis test 
with Dunn’s posthoc test, p<0.01, to compare age and disease characteristics between SCA1, 
SCA2, SCA3 and SCA6. Written informed consent in accordance with the declaration of Helsinki was 

obtained from all participants. 
 

Analyses 
We excluded two subjects with invalid genetic information and 16 subjects with invalid entries in 
neurological scales. The data were brought into a common format, and the disease stage 
annotation was harmonized (Table S1). According to the objectives of this work, we grouped the 
data into progression data (scores at up to five follow-up visits within 3 years) and input data 
(possible predictor variables, including SARA and INAS assessments at baseline, genetic features 
and age). Only observed values of progression data were used to label patients and to train and 
evaluate prediction models. For each SARA or INAS item, an increase in the assigned value 
observed during any follow-up visit compared to the baseline visit corresponds to a deterioration 
of the symptom and indicates a progression of the disease. To analyze relationships among the 
different neurological symptoms, we examined co-occurrence patterns of deterioration events. 
The task of predicting disease progression for a specific neurological symptom was treated as a 
survival analysis problem. We consider progression-free survival, which is equivalent to 
maintaining a certain capability without deterioration in the assessed scale. For that, we used 
fixed time windows of 0.5, 1, 1.5, 2 and 3 years after the baseline visit, ignoring minor time shifts 
of up to two months in the dates of visit appointments. The information on events and times was 
set into relation with patient characteristics at the baseline visit by applying survival forests, which 
were selected as the best performing approach among four survival analysis methods applied to 
each of the individual SCA types. The performance was evaluated by the concordance index on 
the same test sets in four-fold cross-validation. The transitions between the most relevant clinical 
milestones, the deterioration of disease stages (namely loss of free walking ability/need to use 
walking aids and loss of ambulation/need to use a wheelchair), were modeled separately to 
specifically identify features guiding each transition. For each training set, a bootstrapping 
approach was used to select the most predictive features on hundred resampled instances of the 
training set. All analyses were performed using R, version 4.1.0. For detailed information on data 
handling and visualization, association rule mining, progression prediction and feature selection 
as well as the respective R packages see Supplement (6.1). 
 
 

Results 
 
Clinical and demographic characteristics 
The combined SCA cohorts comprised 1538 subjects, including 147 healthy controls, with a total 
of 3802 visits. There were maximally six visits per subject, within a time frame of maximally three 
years. Clinical and demographic characteristics are summarized in Table 1. 
 

Table 1: Summary characteristics for SCA1, SCA2, SCA3 and SCA6 mutation carriers as well as healthy 
controls from the collected data 
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SCA population shows a continuous spectrum of disease severity  
Based on their clinical time courses, the subjects in the compiled data collection form a continuum 
from healthy state to non-severe disease to severe disease stages (Figure 1). Patients with a 
transition from a non-severe (disease stages 0-1) to a severe state (disease stages 2-3) during the 
observed time period are located at the interface between both states (Figure 1 A). The only visible 
structure among the subjects are three different stripe-like clusters, each one separately 
replicating the common disease stage gradient. Those clusters are directly related to the number 
of missing values in the original data and the different composition of the RISCA cohort with a 
focus on pre-ataxic mutation carriers (Figure S1 B-C). (Figure S1 D). Apart from that, the cohorts 
mix and do not show any batch effects. Similarly, the different SCA types are well distributed across 
clusters and disease severity levels, indicating that overall disease severity and data acquisition 
standards do not differ between SCA types (Figure S1 E). 
 
The disease stage gradient aligns with the SARA sum score at the baseline clinical visit, (Figure 1 
B) but not with the SARA sum score annual progression (Figure S1 F). This means, the baseline 
score is indicative of disease stage, but the rate of SARA progression does not differ between 
different stages of the disease (Figure 1 D, Figure S2). Even the subjects that transitioned to the 
severe stage within the three years do not appear as a separate cluster (Figure S2). 

Figure 1: Overall visualization of subjects based on principal component analysis of clinical time courses 
across all neurological scales. A. Coloring by disease stage annotation (Healthy: control subject; Non-severe 
stage: stage 0 or 1, corresponding to normal status or ataxic gait, but ability of free walking, at baseline visit 
and all follow-up visits; Severe stage: stage 2 or 3, corresponding to the need to use walking aids or 
wheelchair, already at baseline visit; Transitioning to severe stage: stage 0 or 1 at baseline visit and stage 2 
or 3 at a follow-up visit within three years from the baseline visit; Insufficient stage information: SCA subject 
with non-severe stage at baseline and at follow-up visits up to one year, but with no further follow-up visits 
afterwards). B. Coloring by SARA sum score at the baseline visit. Both coloring schemes show a gradient from 
the top left to the bottom right. C. Coloring by the major missing value bins related to the number of missing 
values (see Figure S1B). The visible stripe-like clusters (A-C) are explained by the number of missing values in 
the input data (C). D. Principal component visualization of subjects based on maximum annual progression 
rates of the SARA sum score and individual SARA items. Coloring by disease stage annotation like in A. Here, 
no clusters can be identified. 
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SARA sum score is the most representative descriptor of disease progression 
Although the SARA progression rates did not reveal distinct patient groups, the SARA sum score 
progression was most representative of the overall disease progression. Among the neurological 
scales (including SARA items, SARA sum score, INAS items, INAS count and disease staging), a 
deterioration of any single symptom likely implied a deterioration of the SARA sum score. These 
relationships, called association rules (Section 6.1), were found with high confidence scores across 
patients from all SCA types. For disease staging and the individual SARA items, the rule confidence 
scores always lay above 92 %. For instance, in 536 of the 564 cases, where the SARA gait score 
worsened, also the SARA sum score worsened, yielding a confidence of 95 % for the rule. Also, a 
deterioration of individual INAS items was always reflected in a deterioration of the SARA sum 
score in at least 80 % of the cases. Among the INAS items, tremor and muscle atrophy implied a 
SARA sum score deterioration with the largest confidence (94 %). In contrast, the INAS count score 
reflected only deterioration of fifteen single INAS items with confidence scores above 80 % in the 
data. This means, although the SARA sum score aggregates only SARA items, it is a better 
descriptor of the overall disease state with respect to INAS symptoms than the INAS count. Many 
combinations of items were perfectly associated (i.e., with a confidence score of 100 %) with the 
SARA sum score, the INAS count or single items. For instance, if SARA item heel-shin slide and INAS 
item broken up smooth pursuit deteriorated, the SARA sum score deteriorated.  
 
Future disease progression events are predictable from the current neurological status 
Progression frequency.  
An overview of the relative progression frequencies within 3 years of all considered neurological 
items is given in Figure S4. In general, SCA6 differed from the other SCA types, exhibiting lower 
deterioration frequencies for the majority of INAS items. Overall, the individual SARA items, which 
include severity ratings, naturally showed a much larger deterioration frequency in the observed 
3-year period than the INAS items coded as absent or present. Only the INAS count reflected 
deterioration of a larger fraction of patients. 
 
Progression predictability.  
We compared four modeling approaches for the prediction of transition to higher disease stage. 
Among these, the survival forest approach was the only one that performed consistently well for 
all the SCA types (Figure S5). Consequently, this approach was chosen for all following analyses. 
The performance of deterioration predictions varied with SCA type and neurological item, but was 
above random for almost all items in each SCA type (Table S1, Figure S6). With the largest number 
of recorded patients, SCA3 showed the best overall prediction performances. Disease stage 
predictability on all cross-validation test sets was between 0.62 and 0.95 for all SCAs. 
 
Identification of the top predictive features. 
Only a small number of features had a high importance for the prediction of disease stage 
progression. The baseline disease stage, the baseline SARA sum score and the baseline SARA gait 
score were among the top five predictors in each SCA type (Figure 2). Furthermore, SARA stance 
showed increased relevance for SCA1 and SCA2, whereas SCA6 got the largest importance score 
for INAS dysphagia among the SCA types, and the lowest importance score for the number of 
repeats in the expanded allele. A comprehensive overview for each SCA type is given in Figure S7). 
We used Sankey diagrams to visualize the most predictive items for the progression of each 
neurological item (Figure S8). For each item, the three top predictors are given. The majority of 
scales and items had their own baseline value among the top three predictors. Beyond those 
evident predictors, there were many cross-relationships among items. Overall, the baseline score 
of SARA gait was among the most universal predictors for SCA2, SCA3 and SCA6 (Figure S8, Table 
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S1). Likewise, the number of repeats in the expanded allele was a main predictor for SCA1 and 
SCA3. 

 
 
Each disease stage transition is characterized by specific clinical markers 
In the disease course of SCAs, two clinical milestones of high impact are the loss of the ability of 
free walking, coming with the need to use walking aids (transition from stage 1 to stage 2), and 
the need to use a wheelchair (transition from stage 2 to stage 3). Within our data set, the largest 
number of such observed transitions was available for SCA3 (N = 57 and N = 39, respectively; 
Figure S4, Table S4), so we describe these results in more detail in the following paragraphs. 
 
Transition from disease stage 1 to disease stage 2 in SCA3: Loss of free walking ability 
The loss of free walking ability could be predicted for SCA3 from all the baseline features with a 
median test performance of 0.79. In spite of the reduced number of training examples for the 
specific transition, this test performance is similar to the test performance for the overall stage 
progression including all disease stage transitions (Table S1). To highlight the most central 
predictive markers, we determined features that were robustly identified to be among the top five 
predictive in multiple training sets during cross-validation (6.1). Age, INAS count, presence of 
fasciculations, CAG repeats of the normal allele, SARA items finger chase, gait and stance as well 
as SARA sum score were the main features that contributed to predicting progression, i.e. loss of 
free walking, within three years (represented by a column on the left-hand side in Figure 4 A, a 
color key indicating the range of values is given below each column, respectively). The heatmaps 
allow interpretations in horizontal as well as vertical directions. Following a horizontal line, one 
particular combination of features can be related to the respective predicted 3-year outcome on 
the right-hand side, represented as the probability to keep the ability of free walking within three 

Figure 2: Top important input features for predicting disease stage progression in SCA1, SCA2, SCA3 and SCA6. The 
deterioration of disease stage (normal, gait disturbances, walking aids, wheel chair) marks key clinical milestones. 
Neurological measurements at baseline visit, age and genetic information were the input features for the prediction 
of disease stage progression. For every input feature, the importance values for the prediction of disease stage 
deterioration were assessed in each SCA separately and for each SCA type, the features with the top five median 
importance values were selected. For cross-type comparisons the top features of all SCA types were combined and 
sorted from high to low according to their importance within each SCA type, respectively. The top five features for 
the respective SCA type are to the left of the dotted line. This is a condensed representation of the importance plots 
across all input features (Figure S7). Boxplots indicate the distribution of feature importance values assigned by 
survival forests in four-fold cross-validation (bold black line: median, box: 0.25 and 0.75 quantile, whiskers: minimum 
and maximum value). CAG expanded: number of CAG repeats in the expanded allele, CAG normal: number of CAG 
repeats in the normal allele, a comprehensive overview of single INAS and SARA items is given in Table S2. 
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years. Advanced baseline scores for SARA sum, SARA stance, SARA gait and SARA finger chase 
corresponded to a high risk of stage transition, whereas low scores of these features corresponded 
to a low risk of stage transition (Figure 4 A). Furthermore, the low-risk groups were characterized 
by a low age at the baseline visit, a low INAS count and absence of the INAS fasciculations 
symptom. A vertical reading of the columns allows to identify relationships between single 
features and the risk of losing the ability of free walking. In general higher values in the SARA sum 
score as well as the SARA items gait, stance and finger chase lead to a high risk of deterioration. 
Here, higher values always occur in the upper portion of the respective column, which is related 
to a high risk of progression, as indicated by the bottom-top triangle on the right hand side of the 
figure. In contrast, the values of age or INAS count are mixed across the vertical of their columns, 
with no consistent discernible pattern. Thus, even though, they were identified as the top 
predictive features, the overall risk of progression depends substantially on the constellation of 
the other features. To further facilitate the interpretation how these predictive features in 
combination affect the chance of not progressing to a worse stage within three years, a decision 
tree was built (Figure 4 B). It shows that a SARA gait score of 2 or less and a SARA sum score of 5 
or less led to the greatest probability of keeping the free walking ability, whereas a SARA gait score 
of at least 3 in combination with INAS fasciculations and a SARA sum score of at least 12.5 led to 
the lowest probability of keeping the free walking ability.  
 
Transition from disease stage 2 to disease stage 3 in SCA3: Loss of ambulation 
For the transition to the need of using a wheelchair, the median cross-validation prediction 
performance on SCA3 patients was 0.77, which is again similar to prediction performance for the 
overall stage progression (Table S1). Six of the robustly identified predictive features in SCA3 
patients were the same as for the loss of the free walking ability: SARA sum, SARA stance, SARA 
gait, the number of CAG repeats in the normal allele and age (Figure 4 A). The additionally 
identified predictive SARA features were SARA speech and SARA fast alternating hand movements. 
For both of them, low scores were associated with low risk of transitioning. Furthermore, the 
number of repeats in the expanded allele now also showed a clear correlation with the 
transitioning risk. Only in combination with high repeat numbers of the expanded allele, low age 
led to a high risk of needing a wheelchair (Figure 4 B). As before, SARA gait guided the basic 
decision in the tree, but then the number of repeats in the expanded allele played the most 
prominent role in this disease stage transition. High values for these two features together with 
large baseline scores for SARA fast alternating hand movements and SARA stance were most 
indicative for the highest risk of needing a wheelchair. 
 
Comparison of SCA types and cross-validation of models 
After focusing on stage transitions for SCA3, we now compare them to the respective stage 
transitions of the less common SCA types. While for SCA3 SARA item gait was the basic branching 
point in the decision tree for both transitions, it was SARA sum for SCA1, 2 and 6 in the transition 
from stage 1 to 2 (loss of free walking ability). For both SCA1 and SCA2, SARA stance got the largest 
importance weight after the predictors shared by all SCA types, stage, SARA sum and SARA gait 
(Figure 2), and had a clearer effect on the wheelchair transition (Figure S14, Figure S15) including 
decision trees) than on the walking aid transition (Figure S10, Figure S11). For more details, see 
Supplement. To further study whether a pre-selection of input features has an impact on the 
predictability, we compared the performance of survival forest models using all input features to 
models using only a subset of features. In general, regardless of the specific stage transition of 
interest, it was beneficial to consider the whole feature profiles during predictions (Figure S9). 
However, in the case of very small training datasets, such large models may overfit and feature 
selection may improve the prediction performance (Figure S9).   
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Figure 3: Assessing the total risk for SCA3 patients of transitioning within three years from disease stage 1 to disease 
stage 2 (loss of free walking ability). A. The top predictive features were selected by bootstrapping within a four-fold 
cross-validation (for details see Methods, Figure S9). Each column on the left hand side represents one of the features, 
that were robustly identified as a main contributor to the prediction for the loss of free walking ability within the next 
3 years. Color coding of each feature range is indicated by the Color Key under the respective column with blue coloring 
indicating low values and red coloring indicating high values. The graph allows interpretations in horizontal as well as 
subsequently vertical reading. Following a horizontal line, one particular combination of features can be related to the 
respective predicted 3-year outcome by following a imagined horizontal line to the resulting probability to keep the 
ability of free walking within three years on the right-hand side. A vertical reading of the columns allows to identify 
patterns within single features related to the risk of losing the ability of free walking. It becomes obvious that higher 
values in the SARA items gait, stance, finger chase and SARA sum score as well as the presence of fasciculations are 
associated with a relatively high risk for the loss of the ability to walk freely. Here, higher values always occur in the 
upper portion of the respective column, which is related to a high risk (as indicated on the right-hand side). In contrast, 
the values of age, INAS count as well as CAG repeats of the normal allele, are mixed across the vertical of the columns, 
respectively, with no consistent discernible pattern. Even though they were identified as the top predictive features, 
the overall risk of progression depends substantially on the constellation of the other features. B. A decision tree was 
built from the robustly identified top predictive features to illustrate their combined effects on the probability to keep 
the ability of free walking within the next 3 years, derived from the mean cumulative hazard in each leaf. It is solely 
shown for ease of interpretation and does not constitute the full prediction model. At each inner node of the tree, the 
left branch satisfies the condition written at the top of the node, whereas the right branch does not satisfy it. The 
probability to remain in disease stage 1, or in other words keeping the ability for free walking is given at each branching 

end and is color coded according to the probability of keeping the free walking ability on the right-hand side in (A). 
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Figure 4: Assessing the total risk for SCA3 patients of transitioning within three years from disease stage 2 to disease 
stage 3 (need of using a wheelchair). A. The top predictive features were selected by bootstrapping within a four-fold 
cross-validation (for details see Methods, Figure S9). Each column on the left hand side represents one of the features, 
that were robustly identified as a main contributor to the prediction for the loss of ambulation, i.e. the need to use a 
wheelchair, within the next 3 years. B. Decision tree built from the robustly identified top predictive features to 
illustrate their combined effects on progression risk (see Figure 3 for further details on the charts). 
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Discussion 
We analyzed a large data set of five European and US longitudinal observational studies of the 
most common spinocerebellar ataxias, SCA1, SCA2, SCA3 and SCA6. Using a purely data-driven 
approach, we found (1) that the SCA population studied represented a continuous spectrum of 
disease severity without evidence for separate clusters of deviating disease severity or 
progression rates, (2) that the SARA sum score was the most representative descriptor of disease 
progression, and (3) the progression to advanced disability stages can be predicted from 
neurological status at baseline visit, CAG repeat length and age. While previous studies that looked 
for predictors of disease progression concentrated on the effect of a small number of demographic 
and genetic factors, such as age, sex, and CAG repeat length 6, 14, we applied machine learning 
approaches that also took into account a wide spectrum of baseline clinical features related to 
both ataxia and non-ataxia signs and considered progression of single features as well as disease 
stages indicating milestones of gait deterioration.  
 
Our finding that the studied population showed a continuous spectrum of disease severity across 
the four SCA subtypes was unexpected, as previous studies have emphasized differences of the 
clinical phenotypes and rates of disease progression between SCA subtypes.5, 9, 15 A plausible 
explanation comes from the related finding that the SARA sum score was among the top predictors 
of the overall disease progression. This indicates that ataxia is the major denominator of overall 
disease progression. Non-ataxia signs, which are differentially distributed among SCA1, SCA2, 
SCA3, and SCA6, do not have a sufficiently large effect on disease progression that their presence 
or absence would define separate clusters of deviating disease severity or progression. Rather, 
SARA reflected progression of the majority of non-ataxia signs included in INAS and was a better 
descriptor of the progression of these signs than the INAS count itself. This is in line with our 
previous finding derived from an analysis of the disease stage progression in RISCA and EUROSCA 
that SARA scores steadily worsened with increasing disease stage in all SCA subtypes.6, 7 Previous 
investigations have pointed to a number of metric weaknesses in SARA using conventional 
statistical methods in ataxia cohorts that were smaller and more heterogeneous than the 
combined cohort investigated here.16, 17 Our results underscore the usefulness of SARA to assess 
overall progression across disease stages. Since diseases stages are defined by walking ability, it is 
not surprising that the SARA items related to gait and stance, as well as the SARA sum score, to 
which these two items strongly contribute with 14 of 40 maximal score points, were identified as 
important predictors. However, we also identified two non-ataxia signs, dysphagia and visual 
acuity, as strong predictors of disease progression. Dysphagia, which is encountered in all SCA 
subtypes 18, is a result of cerebellar dysfunction, but is particularly pronounced in patients with 
bulbar involvement. Thus, dysphagia is a clinical indicator of a pathologically extended disease 
state. In addition, dysphagia may result in malnutrition and aspiration and thereby accelerate 
disease progression. Indeed, a survival analysis of the EUROSCA study revealed that dysphagia 
was a strong predictor of shorter survival.19 The role of impaired visual acuity in disease 
progression in particular in SCA6 is new, but understandable, as poor vision impairs postural 
stability.20 This finding underscores the need to monitor vision in SCA patients and to correct 
impairments, if possible.  
 
When focusing on progression prediction at item level, certain observations were to be expected, 
such as that the main predictors for a progression of the SARA item gait were its own baseline 
value, SARA sum score and CAG repeats of the expanded allele. However, in other cases, 
combinations emerged that were not anticipated. For example, the top three predictors for the 
SARA sum score in SCA3 and SCA6 were non-SARA items. With regard to disease stage 
deterioration in SCA3, the CAG repeat length of the normal allele was a robustly identified main 
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contributing feature. This underlines the advantage of purely data-driven approaches, which allow 
to identify such unexpected patterns. 
 
Furthermore, we highlighted specific prediction models for two transitions of high clinical impact 
in the disease course: the loss of free walking ability and the loss of ambulation. Even though the 
overall number of subjects in this pooled analysis was impressively high, numbers of observed 
stage transitions were limited. Consequently, the drawn conclusions need to be interpreted with 
caution. As expected, higher scores of the SARA items gait and stance as well as SARA sum score 
were associated with a high risk to lose the ability of free walking or to lose ambulation within 3 
years. However, for the loss of free walking ability, dysmetria of the upper limbs and the presence 
of fasciculations were associated with a higher risk, whereas for the loss of ambulation poor 
performance in fast alternating hand movements and dysarthria were predictive. Importantly, the 
risk prediction depends on the constellation of all features at once. Thus, some of the main 
predictive features stratify the risk for specific subgroups rather than exhibiting a global 
correlation. For example, only in the subgroup without fasciculations the number of CAG repeats 
correlated with the risk to lose free walking.  
 
Although we were only able to highlight some examples from the wealth of results provided by 
machine learning, our study shows that such a data-driven analysis is feasible and represents 
significant added value due to the assumption-free approach. Our results demonstrate that the 
risk of disease progression can be predicted to some extent and that inclusion of as many disease 
descriptors as possible improves the prediction. Our automated feature importance analysis 
confirmed known medical relationships and generated new hypotheses. The combination of 
different cohorts was possible and proved to be useful. In particular, risk predictions became more 
reliable when a larger number of subjects with observed disease progression was available (see 
the performances in SCA3 vs. the other subtypes). Thus, it would be rewarding to enlarge cohorts 
with longitudinal data acquisitions and specifically observations of disease stage transitions. This 
would allow to evaluate and refine the models and to apply a wider spectrum of methods. 
Moreover, future prediction models enriched by additional biomarker data, such as fluid and 
imaging biomarker, might lead to decisive improvements. Such data science approaches to large-
scale data have the potential to provide valuable insights for patient counseling as well as patient 
stratification in clinical trials and their design.  
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Supplementary Data 
 

Supplementary Data: Methods 
 
Data preprocessing and handling of missing values 
We excluded two subjects with invalid genetic information and 16 subjects with invalid entries in 
neurological scales. The data were brought into a common format, and the disease stage 
annotation was harmonized (Table S3). According to the objectives of this work, we grouped the 
data into progression data (scores at follow-up visits after 0.5, 1, 1.5, 2 or 3 years) and input data 
(the possible predictor variables, including the scores at the baseline visit, genetic data and age). 
The input data contain 8.3 % missing values; 784 subjects (51.0 %) had no missing value in their 
input profile (Figure S1 A). For the predictive analyses, missing values in the input data were 
imputed by applying the k-nearest neighbor method kNN from the R package VIM (version 6.1.1) 
on the respective training data set of a cross-validation approach, using the default setting with 
k=5 and numFun=median. Missing values on the input data of test instances were imputed 
accordingly, using the median of the five nearest neighbors from the training set based on input 
features only. The progression data contain 75.0 % missing values. For 412 subjects (27 %), no 
follow-up assessments were available (Figure S1 B). All subjects with available follow-up 
assessments (N=1126) had missing values in specific assessments at one or several follow-up 
visits. However, 358 subjects (23.3 %) had all SARA assessments (sum score and individual items) 
for the follow-up visit after one, two, and three years after the baseline visit. Only observed values 
of progression data were used to label patients and to train and evaluate prediction models.  
 
Definition of progression 
For each neurological item, an increase in the assigned value observed during follow-up visits 
compared to the baseline visit corresponds to a deterioration of the symptom and indicates a 
progression of the disease. For each subject, we considered for prediction approaches the 
occurrence of progression and, if applicable, the first progression event. For dataset statistics and 
visualization, we also considered the maximum annual progression rate per subject. The annual 
progression rate with respect to a particular neurological item is defined as the score increase 
within one year. It can be estimated from the score differences of the follow-up visits to the 
baseline visit, relative to the respective time intervals. Due to the non-linear nature of most time 
courses, frequently showing a sigmoidal profile, taking the maximum rate estimate was more 
appropriate than taking the mean rate estimate. 
 
Data visualization 
To check the consistency among the five pooled cohorts and the potential existence of patient 
subgroups with deviating disease courses, the subjects of the combined dataset were visualized 
based on their time courses of neurological assessments. Due to the large fraction of missing 
values in the progression data, we worked with two representations of per-subject profiles to 
avoid biased conclusions: a) the maximum annual progression rate computed from observed data, 
b) imputed time course data for all neurological scales. For each data representation, principal 
component analysis (PCA) was performed using the prcomp function in R version 4.1.0. Subjects 
were colored according to different attributes, including SCA type, data source (cohort), disease 
stage transition, SARA sum score at the baseline visit and annual progression rate of the SARA sum 
score. In addition to PCA visualizations of the pooled data set, specific PCA visualizations were 
done for each SCA type. Beside PCA, the uniform manifold approximation and projection approach 
and multi-dimensional scaling were used as alternative visualization methods with several 
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different distance measures also on non-imputed data, applying the umap R packages and 
cmdscale function in R, respectively. As they did not reveal more aspects of the progression data 
structure, we present only the PCA results. 
 
Association rule mining 
To analyze relationships among the different neurological scales, we examined co-occurrence 
patterns of deterioration events. Mining of coupled deterioration events for multiple neurological 
items can be done at different levels of granularity. The presented results focus on deterioration 
events at the subject level, pooling all events within the follow-up time of three years. The analysis 
was done with the R package arules, version 1.7-3, setting the minimum frequency to 0.01 and 
the target to ``rules". The resulting rules state associations between deterioration events in the 
antecedent (an if statement corresponding to the left-hand side of the rule) and deterioration 
events in the consequent (a then statement corresponding to the right-hand side of the rule). An 
example rule would be the following: If items A and B deteriorate, then item C also deteriorates. 
The applicability of such a rule is described by two measures, the support and the confidence. The 
support is the relative frequency of subjects that had deterioration events for the whole set of 
items included in the rule (in the example \{A,B,C\}). The confidence indicates which fraction of 
subjects that satisfy the antecedent also satisfies the consequent. In the example, it is equivalent 
to support(\{A,B,C\})/support(\{A,B\}). The confidence is 100 % if the rule holds without exception 
in the data. In practice, perfect rules that are only supported by single or very few subjects are not 
interesting. Thus, the search is guided by a minimum support threshold. Time-resolved 
associations with sets of neurological items that changed together at a specific time point can be 
computed in the same way by restricting the dataset accordingly.  
  
Progression prediction 
The task of predicting disease progression for a specific neurological symptom was treated as a 
survival analysis problem. In this context, we consider progression-free survival, which is 
equivalent to maintaining a certain capability without deterioration in the assessed scale. For each 
subject, we indicated whether a deterioration event occurred within the three years of 
observation. If that was the case, the time from the baseline visit to the first deterioration event 
was recorded. Otherwise, the time until the last follow-up visit was reported. For that, we used 
fixed time windows of 0.5, 1, 1.5, 2 and 3 years after the baseline visit, ignoring minor time shifts 
in the dates of visit appointments in order to focus on the overall progression patterns. The 
information on events and times was set into relation with patient characteristics at the baseline 
visit by applying different survival analysis techniques, which were applied separately to each SCA 
type.  
 
Evaluation 
The reliability of relationships derived from the training data can be checked by predicting the 
progression risk on unseen data and evaluating the predictions with respect to the observed 
ground truth. A standard evaluation measure in survival tasks is the concordance index, which is 
the fraction of correctly ranked comparable pairs among all comparable pairs. A pair of subjects 
is comparable if either both subjects had a deterioration event and one of them happened earlier 
than the other, or if one subject had an event and the other subject was observed for at least the 
same time period without having an event. Subjects with tied events are not comparable. For the 
concordance index computations in this work we used the function concordance.index from the 
survcomp R/Bioconductor package, version 1.42.0. A four-fold cross-validation approach was 
employed for evaluation, splitting the subjects into four groups and leaving each group once as a 
test set while training the prediction models on the pooled set of the three other groups. Fixed 
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subject groups were used to evaluate different prediction approaches for different neurological 
symptoms of a specific SCA type. The groups were determined such that each group had a fair 
share of comparable pairs. For that, a graph-based approach was applied, connecting comparable 
subjects by edges and recursively splitting the graph into two parts by the graph clustering method 
cluster\_fast\_greedy from the igraph R package, version 1.2.11. Since the INAS scales yielded a 
smaller number of comparable pairs than the SARA scales in our data, we took the comparable 
pairs for the INAS count score to determine the common subject groups in the analyses that 
included progression of all the scales. 
Table S1 Statistics for disease progression prediction across all neurological symptoms (37 in total). The given 
prediction performance is the median concordance index on test data from four-fold cross validation (Figure S5). 
Progression of a specific symptom is considered to be predicted above random if the concordance index was 
greater than 0.5 in all test sets of the cross-validation (Figure S6). Progression of a specific symptom is considered 
dependent on its own baseline if the baseline value is among top three progression predictors of that symptom 

(Figure S8). For the top progression predictors across all symptoms, we give the percentage of symptoms for 
which they are among the top three predictors. Low progression INAS items are those among the 26 single INAS 
items that have less than 5 % progression frequency (Figure S4). Specifically progressing INAS items are those 
that progress with frequency at least 5 % in only one SCA type. 

 
Progression prediction methods 
We applied several different survival prediction methods and comparatively evaluated their 
performance by the concordance index on the same test sets, considering the time to the first 
occurring event as described above. First, we computed standard Cox regression using the coxph 
function from the survival R package, version 3.2-13. This approach trains only on the first 
occurring event per subject. Second, multiple recurring progression events per subject were taken 
into account using the Anderson-Gill extension of the Cox model also implemented in the coxph 
function. Third, a regularized prediction model was obtained by elastic net Cox regression with 
the the R package glmnet, version 4.1-3, setting family=``cox" and alpha=0.5. Finally, a survival 
forest approach was performed with the randomForestSRC R package, version 3.0.2, using 
ntree=1000 and nodesize=10 in the rfsrc function.  
 
Feature selection 
Additionally, progression events of individual disease stage transitions were modeled for each SCA 
type. In this analysis, only subjects at one specific disease stage were considered, and a 
progression event was defined as the transition to a higher disease stage. For evaluation, four-fold 
cross-validation was applied again, using the comparable pairs with respect to this stage 
progression for graph-based subject grouping. For each training set, a bootstrapping approach 
was used to select the most predictive features on hundred resampled instances of the training 
set. On the one hand, we selected the top five features that most frequently got one of the top 
five importance scores in a model using all the features. On the other hand, we selected the top 
five features that most frequently ended up in the feature subset that was determined by a greedy 
iterative approach adding one feature at a time, namely the one with the best concordance index 
on a validation set containing 25 % of the current training set. The selected features of each 
method were subsequently used to train a model on the full training set and test its performance 
on a left-out test set. In this way, the feature selection approach was performed four times 
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independently on different, partly overlapping training datasets. The features that were selected 
more than one time were chosen as candidates for further analysis. To understand the roles of 
these features in the prediction of stage transitions and in particular distinguish positively and 
negatively influencing factors, a decision tree was learned on all subjects with complete 
observations for these features. This was done with the R package tree, version 1.0-41, 
considering a classification into subjects undergoing the stage transition within three years and 
those that do not. We set mincut=3 and minsize=10 in tree.control. For the mindev parameter, we 
used the default value of 0.01. 
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Supplementary data: Clinical and demographic characteristics 
 
List of neurological scale items and disease stage mapping 

Table S2 List of items. Comprehensive list of INAS4 and SARA3 items as well as disease stages12 included in the 
analysis with the used abbreviation and item description. 
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Table S3 Disease stage mapping between the different cohorts. Throughout this work, we use 
the disease stage annotation from ESMI, EUROSCA and SCA-Registry (first column).  
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Supplementary data: SCA population shows a continuous spectrum of disease 
severity correlated to the SARA sum score 
 

Figure S1 Missing value characteristics of subjects. A. Distribution of numbers of missing values for the input 
data. The x-axis denotes the number of missing values, the y-axis denotes the number of subjects for each x-axis 
bin. B. Distribution of numbers of missing values for the progression data (measurements from follow-up visits). 
The three largest bins are labeled M1, M2 and M3. C. Visualization of subjects based on principal component 
analysis of clinical time courses across all neurological scales (same as Fig. 1C). Subjects are colored by the major 
missing value bins (Figure B). D. Visualization of subjects colored by cohort. All CRC subjects belong to the cluster 
dominated by M3. E. Visualization of subjects colored by disease type. F. Visualization colored by the maximum 
annual progression rate of SARA sum score. The distribution of missing value clusters is mainly reflected by 
different cohorts with higher number of missing values. But, there is no relationship between the disease type 
or annual SARA progression and the missing value structure, disease types and SARA annual progression rates 
are distributed across all missing value clusters. 
 
 

 
Figure S2 Principal component visualization of subjects based on maximum annual progression rates of the 
SARA sum score and individual SARA items for each SCA type. Subjects are colored by disease stage annotation. 
A. Annual progression rate principal component visualization of SCA1 subjects only. After restricting the data to 
SCA1 subjects. The coloring scheme is the same as before (Figure B). B. Annual progression rate principal 
component visualization of SCA2 subjects only. C. Annual progression rate principal component visualization of 
SCA3 subjects only. D. Annual progression rate principal component visualization of SCA6 subjects only.  
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Figure S3 Distribution of numbers of repeats in the normal and the expanded allele. 
For each bin, the number of subjects with a corresponding repeat number 
combination is given (\#). The SCA types, marked by different colors, largely occupy 
different regions in the combination space.  
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Supplementary data: Future disease progression events are predictable from the 
current neurological status 
 
Progression frequency 
 

 
Figure S4 Progression frequency of neurological symptoms among the major SCA types. For each item, the 
plot indicates the relative fraction of subjects from a specific SCA type showing a deterioration of the respective 
item within three years from the baseline visit. In addition, the absolute number of cases with progression is 
indicated for the three summary items and the INAS item with lowest relative progression frequencies in SCA1 
and SCA2. 

 
 
 

Supplementary data: Progression predictability 
 
Evaluation of methods for predicting disease stage progression 
 

Figure S5 Comparative performance evaluation of methods predicting disease stage progression events 
individually for each of the most common SCA types. The applied performance measure is the concordance 
index that assesses the fraction of comparable pairs that were correctly ranked by the prediction approach with 
respect to the first deterioration event. Random predictions yield a concordance index of 0.5 (marked by the grey 
line). Boxplots show the distribution of performance values on left-out test data from four-fold cross-validation 
(bold black line: median, box: 0.25 and 0.75 quantile, whiskers: minimum and maximum value). The following 

SCA1: 44 cases 

SCA2: 52 cases 

SCA3: 101 cases 

SCA6: 42 cases 

SCA1: 168 cases 

SCA2: 197 cases 

SCA3: 348 cases 

SCA6: 124 cases 

SCA1: 3 cases 

SCA2: 5 cases 

SCA3: 58 cases 

SCA6: 8 cases 

SCA1: 108 cases 

SCA2: 130 cases 

SCA3: 200 cases 

SCA6: 59 cases 
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four prediction methods were applied: Cox regression, Cox regression taking all deterioration events of the 
observed time course into account during training, Cox regression with elastic net regularization to impose usage 
of a limited number of input features, survival forests. In contrast to Cox regression, survival forests allow for 
nonlinear combinations of input features. The survival forest approach was the only one that performed 
consistently well for all the SCA types. 

 
 
Progression predictability for all neurological items and disease stage  

Figure S6 Progression predictability of all neurological items as well as disease stage in each SCA type. Boxplots 
show the four-fold cross-validation performance of symptom-specific progression prediction by survival forests, 
indicating how well the progression of each item could be predicted. Random predictions yield a concordance 
index of 0.5 (marked by the grey line). Progression of all neurological items can be predicted, performing 
significantly better than random. 
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Supplementary data: Identification of the top predictive features 
 
Progression prediction for disease stage 

Figure S7 Feature importance for predicting disease stage progression in in SCA1, SCA2, SCA3 and SCA6. The 
deterioration of disease stage (normal, gait disturbances, walking aids, wheel chair) marks key clinical 
milestones. For each item the importance values for the prediction of disease stage deterioration were assessed. 
Boxplots indicate the distribution of importance values assigned by survival forests in four-fold cross-validation 
for each item (bold black line: median, box: 0.25 and 0.75 quantile, whiskers: minimum and maximum value). A 
condensed version is given in the main text in Fig. 2}; in which for cross-SCA comparisons of relative feature 
importances, the top 5 features of each SCA type were selected.   
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Progression prediction of each single item 

Figure S8 Sankey diagrams representing the top three predictors for the progression of each neurological item 
in SCA1, SCA2, SCA3 and SCA6.} The importance values of input features for the prediction of symptom 
deterioration were assessed in each SCA separately. Neurological measurements at the baseline visit, indicated 
by the time point zero (0), were the input features for progression prediction. For each item, the features with 
the top three median importance values were selected. They are represented by the three incoming edges for 
each progression item in the right column. Edges in stronger color with black borders indicate that progression 
of a specific neurological scale is predicted by its own baseline value, assessed at the baseline visit. 
In the left column, the height of each item corresponds to the number of items for which this particular feature 
was amongst the top three predictors.  
The majority of  scales (74 %) had their own baseline value among the top three predictors (Figure S8, Table S1). 
Beyond those evident predictors, there were many cross-relationships among items. 
To outline one particular example, the SARA item gait prediction for SCA3 had a median concordance index of 
0.62 and its top three predictors were its own baseline value, SARA sum and CAG repeats of the expanded allele. 
While this example might be rather expected, in other cases, combinations emerge, that are less to be 
anticipated.  
Interestingly, the top three predictors for the SARA sum score in SCA3 and SCA6 were non-SARA items.  
Overall, the baseline score of SARA gait was among the most universal predictors across symptoms for SCA2, 
SCA3 and SCA6 (Table S1). Likewise, the number of repeats in the expanded allele was a main predictor for SCA1 
and SCA3. Top progression predictors across symptoms.  
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Figure S9 Cross-validation performance of survival forest models predicting specific disease stage transitions. 
A. Prediction performance for the transition from disease stage 1 to disease stage 2 (loss of free walking ability). 
In addition to the performance of models using all input features, the boxplots show the performance of models 
using a set of five features that were selected by a bootstrap on the respective training set, based either on 
importance scores or on a greedy iterative procedure (Methods). B. Prediction performance for the transition 
from disease stage 2 to disease stage 3 (loss of ambulation). Due to the low number of cases (less than twelve 
transitions), cross-validation performance is not reported for SCA1 and SCA6. 

 
 

Supplementary Data: Comparison of SCA types and cross-validation of models 
 
Cross-Validation of models 
Transition from disease stage 1 to 2 and 2 to 3 in SCA3 are shown in Figure 3 and 4, respectively, 
and we now compare them to the respective stage transitions of the other SCA types with less 
observational points available. While SCA2 and SCA3 maintained high performance levels similar 
to the overall stage progression prediction, SCA1 and SCA6 with their lower number of cases 
showed a performance drop when specifically predicting the loss of free walking transition (Figure 
S9 A). For SCA1, the prediction performance was rescued when restricting the model to the top 
five predictive features greedily selected on the training data. In contrast, SCA3 kept a similar 
performance and SCA2 and SCA6 showed a worse performance for the restricted models. 
Regarding the risk of needing a wheelchair however, predictions for SCA2 and SCA3 seemed to 
benefit from restricting the models to five predictive features, in particular when selecting the 
features based on their importance in the large model with all features (Figure S9 B). We conclude 
that generally, independent of the specific stage transition of interest, it is instructive to consider 
the whole feature profiles during predictions. Only in the case of very small training datasets, such 
large models may overfit and feature selection may improve the prediction performance.  
 
For SCA1 and SCA6, there were less than twelve patients undergoing the transition from stage 2 
to stage 3. Therefore, it was not possible to test the model generalizability by cross-validation. 
 
Nevertheless, we performed for each SCA type and stage selection the same training set selection 
and feature selection procedures (Methods) and compared the resulting stage-1-to-2 models 
(Figures S10, S11, S13 with the stage-2-to-3 models (Figures S14, S15, S17) and the cross-stage 
models (Figure 2).  
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Please note, for SCA3 charts are given with the additional information of cumulative hazard and 
respective frequencies (Figures S12, S16) that were not included in the figures in the main 
manuscript (Figures 3, 4). 
 
 
Specific disease stage transitions 

 
 
 
 
 
 

Table S4 Summary of stage transitions. Number of subjects of each disease type for which follow-up visits existed 
and a corresponding transition was observed or not. 

 
The decision trees are solely shown for ease of interpretation and do not constitute the full 
prediction models. 
 
Background and interpretation of figures: 
Each figures aims to assess the total risk for patients of transitioning within three years from 
disease stage 1 to disease stage 2 (loss of free walking ability) or disease stage 2 to 3 (loss of 
ambulation), respectively. 
The risk was quantified in the context of robustly identified top predictive features. In other words, 
each column on the left hand side represents one of the features, that were robustly identified as 
a main contributor to the prediction for the loss of free walking ability within the next 3 years. 
Color coding of each feature range is indicated by the Color Key under the respective column with 
blue coloring indicating low values and red coloring indicating high values. The risk for progression 
in terms of the cumulative hazard was computed based on the whole input feature profiles by the 
survival forest approach. The top predictive features were selected by training set bootstrapping 
within a four-fold cross-validation (Methods, Figure S9). The cumulative hazard was divided into 
bins of width 0.2, and for each bin the number of cases (Histogram next to the cumulative hazard 
column) and the median value of each predictive feature is shown (feature columns on the left 
side).   
 
The graph allows interpretations in horizontal as well as subsequently vertical reading. Following 
a horizontal line, one particular combination of features can be related to the respective predicted  
3-year outcome by following a imagined horizontal line to the right-hand side, in particular, to the 
resulting probability to keep the ability of free walking within three years (given with the column 
on the right-hand side), or in other words a high or low risk for the loss of free walking ability 
(indicated by the triangle). E.g. following the 2 bottom bins, one can see that low values in each 
features are related to a low risk and almost 100 % probability to keep the ability of free walking 
within the next 3 years. A vertical reading of the columns allows to identify patterns within single 
features related to the risk of losing the ability of free walking. It becomes obvious that, e.g. in 
general higher values in the SARA sum score lead to a high risk of deterioration. However, this 
hold true for other disease specific items, e.g. is the presence of fasciculations in SCA3 associated 
with a relatively high risk for the loss of the ability to walk freely. Here, higher values always occur 
in the upper portion of the respective column, which is related to a high risk (as indicated by the 
probability column as well as the triangle on the right-hand side). In contrast, e.g. the values of 
age or INAS count are often mixed across the vertical of their columns, with no consistent 
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discernible pattern. Even though, they were identified as the top predictive features, the overall 
risk of progression depends substantially on the constellation of the other features.  
 
B. To facilitate interpretation decision tress were built using only features that were selected 
multiple times in different training data sets. The resulting decision trees built from the robustly 
identified top predictive features illustrate their combined effects on the probability of non-
progression within the next 3 years, derived from the mean cumulative hazard in each leaf. They 
are solely shown for ease of interpretation and do not constitute the full prediction model. At each 
inner node of each tree, the left branch satisfies the condition written at the top of the node, 
whereas the right branch does not satisfy it. The probability to remain in disease stage 1 or 2, or 
in other words keeping the ability for free walking or ambulantion is given at each branching end 
and is color coded according to the probability on the right-hand side in (A). 
 
 
Transition from disease stage 1 to disease stage 2 for SCA1, SCA2, SCA3 and SCA6 patients: Loss 
of free walking 

Figure S10 Assessing the total risk for SCA1 patients of transitioning within three years from disease stage 1 
to disease stage 2 (loss of free walking ability) in the context of top predictive features. The risk in terms of 
the cumulative hazard was computed based on the whole input feature profiles by the survival forest approach. 
The top predictive features were robustly identified by training set bootstrapping in multiple cross-validation 
folds (see Feature selection subsection in Supplementary Methods). Here, the features are sorted by their 
importance in a model using all data and features. The cumulative hazard was divided into bins of width 0.2, 
and for each bin the number of cases and the median value of each predictive feature is shown. The probability 
of remaining in disease stage 1 is exponentially related to the cumulative hazard. The decision tree was built 
from the robustly identified top predictive features to illustrate their combined effects on the probability of 
remaining in disease stage 1, derived from the mean cumulative hazard in each leaf. It is solely shown for ease 
of interpretation and does not constitute the full prediction model. At each inner node of the tree, the left branch 
satisfies the condition written at the top of the node, whereas the right branch does not satisfy it. 
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Figure S11 Assessing the total risk for SCA2 patients of transitioning within three years from disease stage 1 
to disease stage 2 (loss of free walking ability) in the context of robustly identified top predictive features. 
 
 

 
 
 
Figure S12: Assessing the total risk for SCA3 patients of transitioning within three years from disease stage 1 
to disease stage 2 (loss of free walking ability) in the context of robustly identified top predictive features. 
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Figure S13 Assessing the total risk for SCA6 patients of transitioning within three years from disease stage 1 
to disease stage 2 (loss of free walking ability) in the context of robustly identified top predictive features.  
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Transition from disease stage 2 to disease stage 3 in SCA1, SCA2 and SCA6: Loss of ambulation  
 
 

Figure S14 Assessing the total risk for SCA1 patients of transitioning within three years from disease stage 2 
to disease stage 3 (need of using a wheelchair) in the context of robustly identified top predictive features. 
 
 

 
Figure S15 Assessing the total risk for SCA2 patients of transitioning within three years from disease stage 2 
to disease stage 3 (need of using a wheelchair) in the context of robustly identified top predictive features. 
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Figure S16: Assessing the total risk for SCA3 patients of transitioning within three years from disease stage 2 
to disease stage 3 (need of using a wheelchair) in the context of robustly identified top predictive features.  
 
 
 
 

Figure S17 Assessing the total risk for SCA6 patients of transitioning within three years from disease stage 2 
to disease stage 3 (need of using a wheelchair) in the context of robustly identified top predictive features. 
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