Scalable Risk Stratification for Heart Failure Using Artificial Intelligence applied to 12-lead Electrocardiographic Images: A Multinational Study
View ORCID ProfileLovedeep S Dhingra, View ORCID ProfileArya Aminorroaya, View ORCID ProfileVeer Sangha, Aline Pedroso Camargos, Folkert W Asselbergs, View ORCID ProfileLuisa CC Brant, Sandhi M Barreto, Antonio Luiz P Ribeiro, View ORCID ProfileHarlan M Krumholz, View ORCID ProfileEvangelos K Oikonomou, View ORCID ProfileRohan Khera
doi: https://doi.org/10.1101/2024.04.02.24305232
Lovedeep S Dhingra
1Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
MBBSArya Aminorroaya
1Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
MD, MPHVeer Sangha
1Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
2Department of Engineering Science, University of Oxford, Oxford, UK
BSAline Pedroso Camargos
1Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
MSFolkert W Asselbergs
3Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
4Institute of Health Informatics, University College London, London, UK
5The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
MD, PhDLuisa CC Brant
6Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
7Telehealth Center and Cardiology Service, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
MD, PhDSandhi M Barreto
8Department of Preventive Medicine, School of Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
MD, PhDAntonio Luiz P Ribeiro
6Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
7Telehealth Center and Cardiology Service, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
MD, PhDHarlan M Krumholz
1Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
9Center for Outcomes Research and Evaluation (CORE), Yale New Haven Hospital, New Haven, CT, USA
10Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
MD, SMEvangelos K Oikonomou
MD, DPhil1
Rohan Khera
1Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
9Center for Outcomes Research and Evaluation (CORE), Yale New Haven Hospital, New Haven, CT, USA
11Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
12Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
MD, MSData Availability
Data from the Yale New Haven Health System represent protected health information that cannot be shared publicly. Data from the UK Biobank and the ELSA-Brasil are available to licensed users.
Posted April 03, 2024.
Scalable Risk Stratification for Heart Failure Using Artificial Intelligence applied to 12-lead Electrocardiographic Images: A Multinational Study
Lovedeep S Dhingra, Arya Aminorroaya, Veer Sangha, Aline Pedroso Camargos, Folkert W Asselbergs, Luisa CC Brant, Sandhi M Barreto, Antonio Luiz P Ribeiro, Harlan M Krumholz, Evangelos K Oikonomou, Rohan Khera
medRxiv 2024.04.02.24305232; doi: https://doi.org/10.1101/2024.04.02.24305232
Scalable Risk Stratification for Heart Failure Using Artificial Intelligence applied to 12-lead Electrocardiographic Images: A Multinational Study
Lovedeep S Dhingra, Arya Aminorroaya, Veer Sangha, Aline Pedroso Camargos, Folkert W Asselbergs, Luisa CC Brant, Sandhi M Barreto, Antonio Luiz P Ribeiro, Harlan M Krumholz, Evangelos K Oikonomou, Rohan Khera
medRxiv 2024.04.02.24305232; doi: https://doi.org/10.1101/2024.04.02.24305232
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (718)
- Anesthesia (210)
- Cardiovascular Medicine (3002)
- Dermatology (256)
- Emergency Medicine (449)
- Epidemiology (12898)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4697)
- Geriatric Medicine (432)
- Health Economics (742)
- Health Informatics (2986)
- Health Policy (1081)
- Hematology (399)
- HIV/AIDS (942)
- Medical Education (439)
- Medical Ethics (116)
- Nephrology (481)
- Neurology (4486)
- Nursing (239)
- Nutrition (657)
- Oncology (2329)
- Ophthalmology (659)
- Orthopedics (262)
- Otolaryngology (330)
- Pain Medicine (290)
- Palliative Medicine (85)
- Pathology (506)
- Pediatrics (1218)
- Primary Care Research (509)
- Public and Global Health (7072)
- Radiology and Imaging (1570)
- Respiratory Medicine (933)
- Rheumatology (454)
- Sports Medicine (390)
- Surgery (497)
- Toxicology (62)
- Transplantation (214)
- Urology (187)