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ABSTRACT 

Background: Current risk stratification strategies for heart failure (HF) risk require 

either specific blood-based biomarkers or comprehensive clinical evaluation. In this 

study, we evaluated the use of artificial intelligence (AI) applied to images of 

electrocardiograms (ECGs) to predict HF risk. 

Methods: Across multinational longitudinal cohorts in the integrated Yale New 

Haven Health System (YNHHS) and in population-based UK Biobank (UKB) and 

Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), we identified individuals 

without HF at baseline. Incident HF was defined based on the first occurrence of an 

HF hospitalization. We evaluated an AI-ECG model that defines the cross-sectional 

probability of left ventricular dysfunction from a single image of a 12-lead ECG and 

its association with incident HF. We accounted for the competing risk of death using 

the Fine-Gray subdistribution model and evaluated the discrimination using Harrel’s 

c-statistic. The pooled cohort equations to prevent HF (PCP-HF) were used as a 

comparator for estimating incident HF risk.  

Results: Among 231,285 individuals at YNHHS, 4472 had a primary HF 

hospitalization over 4.5 years (IQR 2.5-6.6) of follow-up. In UKB and ELSA-Brasil, 

among 42,741 and 13,454 people, 46 and 31 developed HF over a follow-up of 3.1 

(2.1-4.5) and 4.2 (3.7-4.5) years, respectively. A positive AI-ECG screen portended a 

4-fold higher risk of incident HF among YNHHS patients (age-, sex-adjusted HR 

[aHR] 3.88 [95% CI, 3.63-4.14]). In UKB and ELSA-Brasil, a positive-screen ECG 

portended 13- and 24-fold higher hazard of incident HF, respectively (aHR: UKBB, 

12.85 [6.87-24.02]; ELSA-Brasil, 23.50 [11.09-49.81]). The association was 

consistent after accounting for comorbidities and the competing risk of death. Higher 

model output probabilities were progressively associated with a higher risk for HF. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.24305232doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.02.24305232
http://creativecommons.org/licenses/by-nc-nd/4.0/


The model's discrimination for incident HF was 0.718 in YNHHS, 0.769 in UKB, and 

0.810 in ELSA-Brasil. Across cohorts, incorporating model probability with PCP-HF 

yielded a significant improvement in discrimination over PCP-HF alone. 

Conclusions: An AI model applied to images of 12-lead ECGs can identify those at 

elevated risk of HF across multinational cohorts. As a digital biomarker of HF risk 

that requires just an ECG image, this AI-ECG approach can enable scalable and 

efficient screening for HF risk.  
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BACKGROUND 

Despite the rising global burden of heart failure (HF) and the availability of evidence-

based therapies for preventing and slowing the progression of the disease, there is a 

lack of a reliable approach for identifying individuals at the highest risk for developing 

HF.1,2 Due to this absence of an established and accessible screening strategy, 

patients often suffer the consequences of delayed diagnosis, including clinical HF, 

frequent hospitalizations, and premature mortality.3–5 Identifying individuals most 

likely to develop future HF can alleviate these risks with early initiation of low-cost 

medical therapies that have been proven in clinical practice guidelines to modify the 

trajectory of the disease, reducing both the risk for incident clinical HF and improving 

life expectancy.6–9 

 Several serum assay- and clinical score-based strategies have been 

proposed to predict incident HF.10–18 While serum assay-based biomarkers such as 

N-terminal pro–B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac 

troponin I (hs-Tn) are independently associated with an elevated risk of incident 

HF,19,20 they are limited by the need for an invasive blood draw and frequent 

inaccessibility at the point-of-care.15,18 Predictive models based on clinical risk 

scores often require specialized testing and have varying predictive discrimination 

and feasibility of deployment.11–13,21 Recently, artificial intelligence (AI)-enhanced 

interpretation of electrocardiograms (ECGs; AI-ECG) has been proposed to detect 

hidden cardiovascular disease signatures from 12-lead ECGs.22–30 However, these 

deep learning models have focused on the cross-sectional detection of prevalent 

systolic dysfunction or HF,27–34 with limited application in predicting incident 

HF.27,29,35,36 Moreover, most current approaches use raw ECG voltage data as 

inputs, inaccessible to clinicians and patients at the point-of-care.29,30 Thus, there is 
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an unmet need for practical and non-invasive screening tools that rely on ubiquitous 

and interoperable data sources to predict the future risk of HF.27 In our previous 

work, we reported an image-based AI-ECG screening approach with which a positive 

screen portended a higher risk of developing left ventricular systolic dysfunction (left 

ventricular ejection fraction [LVEF] < 40%) in patients with normal LVEF.27 However, 

an AI-ECG approach for comprehensive screening of HF risk is essential to realize 

the goals of HF prevention. 

In this study, across three geographically and clinically distinct cohorts, we 

evaluated the hypothesis that an AI-ECG model developed to detect signatures of 

LV dysfunction on an ECG image at baseline will identify those at an elevated risk of 

new-onset HF.   

 

METHODS 

The Yale Institutional Review Board approved the study protocol and waived the 

need for informed consent as the study involves secondary analysis of pre-existing 

data. An online version of the model is publicly available for research use at 

https://www.cards-lab.org/ecgvision-lv.  

 

Data Sources 

We used data from the YNHHS, the UK Biobank (UKB) cohort, and the Brazilian 

Longitudinal Study of Adult Health (ELSA-Brasil), in our study (Figure 1). While the 

YNHHS represents a large and diverse healthcare system in the US, the UKB and 

ELSA-Brasil represent the largest population-based cohorts in the UK and Brazil, 

respectively, with protocolized baseline evaluation and detailed healthcare data 
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capture. A brief overview of the data sources is included in the Supplementary 

Methods.  

 

Study Population 

Across data sources, we included individuals with no known HF who had undergone 

a 12-lead ECG and followed them for the development of incident HF. For this, we 

constructed a cohort of patients seeking care at YNHHS, representing a large 

integrated EHR-based cohort along with well-characterized population-based cohort 

studies of UKB and ELSA-Brasil.  

Among YNHHS patients, we identified the first recorded encounter for all 

patients within the EHR and instituted a 1-year blanking period to define prevalent 

HF (Supplementary Methods; Figure S1). Among 325,319 patients who had one 

or more ECGs after this 1-year blanking period, 76,736 patients who had been 

included in the AI-ECG model development, and 15,754 patients with any HF 

diagnosis code before their ECG were excluded. Moreover, 1544 patients with an 

echocardiogram with an LVEF below 50% or moderate or severe left ventricular 

diastolic dysfunction were also excluded (Figure S2). 

In the UKB, we identified all 42,366 participants who had undergone a 

protocolized ECG as a part of the study procedures. Using the linked national EHR 

data from the UK, we excluded 225 participants who had been hospitalized with the 

record indicating an HF diagnosis code before the baseline ECG. Similarly, in ELSA-

Brasil, we identified all 15,105 participants with a protocolized ECG at baseline, 

excluding 227 with HF at baseline and 58 with an LVEF of less than 50% noted on 

the baseline echocardiogram (Figure S2). 
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Study Exposure: AI-ECG-based HF Risk 

The AI-ECG-based risk of HF represented the direct deployment of a previously 

developed AI-ECG model that detects left ventricular systolic dysfunction (defined as 

LVEF<40%) on ECG images,27 without any further development or fine-tuning.  

Briefly, the model was developed in the YNHHS using ECG images from 

patients with paired echocardiograms and validated across 6 demographically 

diverse and geographically distinct populations as a cross-sectional association 

between AI-ECG-based and imaging-based evaluation of left ventricular systolic 

dysfunction (area under the receiver operating characteristic curve of 0.91 [95% CI, 

0.90–0.92]). Further information about the application of the model in this study is 

included in the Supplementary Methods. The study exposure was a positive AI-

ECG screen, defined as a model output probability greater than 0.1, representing the 

threshold at which the model achieved a sensitivity of over 90% for the cross-

sectional detection of systolic dysfunction during internal validation.27  

 

Study Outcomes and Covariates 

The study outcome was new-onset or incident HF. In the YNHHS, this was defined 

as an inpatient admission with an International Classification of Disease Tenth 

Revision Code – Clinical Modification (ICD-10-CM) for HF as the principal 

hospitalization diagnosis (Table S1). The choice of this approach was guided by the 

over 95% specificity of HF diagnosis codes, especially as the principal discharge 

diagnosis, for a clinical diagnosis of HF.37 We pursued the same approach in UKB, 

where we used linked National Health Service EHR to identify hospitalization records 

with HF as the principal diagnosis code. In ELSA-Brasil, incident HF was identified 

either by in-person interview or the annual telephonic surveillance for all 
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hospitalizations, followed by independent medical record review and adjudication of 

HF hospitalizations by two cardiologists (Supplementary Methods).38 

To evaluate the specificity of the HF risk defined by the AI-ECG model, we 

examined the risk of other cardiovascular conditions, including acute myocardial 

infarction (AMI), stroke hospitalizations, and all-cause mortality (Table S1). 

Information about all-cause death was defined by established approaches for each 

source (Supplementary Methods). A composite outcome of major adverse 

cardiovascular events (MACE) was defined as any primary HF, AMI, or stroke 

hospitalization, or death.  

 For all analyses, common demographic covariates were selected across 

cohorts, including age, sex, race, and ethnicity. Age was defined at the time of the 

index ECG across all cohorts. We further identified the presence of hypertension and 

type 2 diabetes mellitus using encounters for these conditions in the YNHHS EHR as 

well as the EHR records linked with UKB (Table S1). In ELSA-Brasil, information 

about demographic covariates and baseline hypertension and type 2 diabetes was 

recorded at the baseline study visit.39 Race, or skin color, was self-classified based 

on Brazil’s National Bureau of Statistics definition and classified as White, Black, 

“Pardo”, Asian, or Others.39,40 

 

Study Comparator 

Across all study cohorts, we compared the predictive performance of the AI-ECG 

model with the pooled cohort equations to prevent HF (PCP-HF), representing sex- 

and race-specific clinical risk models for estimating incident HF risk, developed and 

validated using data from 7 population-based cohorts.11 The PCP-HF risk score 

includes a combination of several demographic and laboratory-based covariates, 
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including age, body mass index, systolic blood pressure, total cholesterol, high-

density cholesterol, fasting blood glucose, smoking status, antihypertensive 

medication use, antihyperglycemic medication use, as well as 

electrocardiographically defined QRS duration. The PCP-HF input features were 

defined across the study cohorts using the EHR and study visits (Supplementary 

Methods).41–44  

 

Statistical Analysis 

Categorical variables were reported as counts and percentages, and continuous 

variables as median and interquartile range (IQR). The association of AI-ECG-based 

risk with incident HF was evaluated in age- and sex-adjusted Cox proportional 

hazard models with time-to-first HF event as the dependent variable and the AI-

ECG-based screen status (positive or negative) as the key independent variable. 

Further, to account for the competing risk of death while evaluating incident HF, we 

used age- and sex-adjusted multi-outcome Fine-Gray subdistribution hazard 

models.45 The discrimination of AI-ECG and PCP-HF for HF prediction was 

assessed using Harrel’s c-statistic, which incorporates the time dependence of 

outcomes and the non-linearity in the association between predictions and time-to-

outcomes.46–48 The statistical significance level was set at 0.05. All statistical 

analyses were executed using Python 3.11.2 and R version 4.2.0. 

 

RESULTS 

A total of 231,285 individuals constituted the study cohort at YNHHS, with a median 

age of 57 years (IQR 42, 70) and 130,941 (56.6%) were women, and 85,559 (37.0%) 

were non-White. Over a median follow-up of 4.5 years (IQR 2.5-6.6), 4472 (1.9%) 
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had a primary HF hospitalization, 9645 (4.2%) had a primary HF hospitalization or an 

echocardiogram with a LVEF under 50% on subsequent echocardiogram, and 

17,542 (7.5%) died (Table 1).  

In UKB, 42,141 included participants had a median age of 65 years (IQR 59-71), 

21795 (51.7%) were women, and 40,691 (96.6%) were of White race. Over a median 

follow-up of 3.1 years (IQR 2.1-4.5),  46 (0.1%) had a HF hospitalization event and 

346 (0.8%) died (Table 1).  

In ELSA-Brasil, the median age of the 13,454 included participants was 51 years 

(IQR 45-58) and 7348 (54.6%) women. A total of 31 people developed HF, and 229 

died over a median follow-up of 4.2 years (IQR 3.7-4.5). 

 

Predicting the Risk of Incident HF 

At YNHHS, 17,868 (7.7%) patients screened positive based on the AI model applied 

to ECG images. A positive screen was associated with over 6.5-fold higher risk of 

incident HF (HR 6.51 [95% CI, 6.11-6.93]; Table 2). Patients with a positive AI-ECG 

screen had a nearly 4-fold risk of incident HF, compared with patients with a 

negative screen, after accounting for differences in age and sex (adjusted HR [aHR], 

3.88 [95% CI, 3.63-4.14]), as well as additionally accounting for differences baseline 

HF risk factors of hypertension and diabetes (aHR 3.73 [95% CI, 3.50-3.99]). 

Accounting for the competing risk of death, in addition to age and sex, a positive 

screen was associated with an aHR of 3.54 (95% CI, 3.30-3.79) for incident HF 

(Table 2). 

The association of a positive screen with an elevated risk of HF was noted 

across demographic subgroups of age, sex, race, and ethnicity (Table S2). Notably, 
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a positive screen portended an 8-fold higher risk of incident HF in patients < 65 

years of age at the time of ECG (aHR 8.00 [95% CI, 7.12-8.99]).  

The model performance was consistent in sensitivity analyses with subsets of 

the population with (1) ≥3 years of follow-up in the EHR (aHR, 3.75 [95% CI, 3.46-

4.08]), and (2) ≥1 encounter every 2 years (aHR, 3.49 [95% CI, 3.25-3.75]). Further, 

the patterns were consistent when a random ECG was chosen instead of the first 

ECG (aHR, 3.76 [95% CI, 3.38-4.18]) and across different definitions of HF (Tables 

S3 and S4).  

 In UKB, 1142 (2.7%) participants screened positive with the AI-ECG model. A 

positive AI-ECG screen portended an 18-fold higher hazard for incident HF (HR 

18.33 [95% CI, 9.90-33.97]). Accounting for age, sex, baseline hypertension, and 

type 2 diabetes, screen-positive participants had an 11-fold higher risk of HF (HR 

11.36 [95% CI, 6.04-21.36]; Table 2). Further, this risk was even higher in individuals 

below 65 years of age, with an age- and sex-adjusted HR of 25.63 (95% CI, 6.34-

103.61; Table S2). After accounting for the competing risk of death, a positive 

screen was associated with a nearly 13-fold risk of incident HF (aHR: 12.70; 95% CI, 

6.70-24.07).  

 At ELSA-Brasil, 239 (1.8%) participants had a positive AI-ECG screen, with a 

24-fold higher risk for incident HF (age- and sex-adjusted HR 23.50 [95% CI, 11.09-

49.81]) compared with screen-negative participants. This association was consistent 

even after accounting for the competing risk of death (aHR of 22.79; 95% CI, 10.21-

50.89; Table 2).  

 

Hazard Across Model Probability Outputs  
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In the YNHHS cohort, each 0.1 increment in the model output probability portended 

a 36% higher hazard of an incident primary HF hospitalization (aHR 1.36 [95% CI, 

1.35-1.38]). Among screen-positive patients, patients with model output probability 

between 0.1-0.5 and 0.5-1 had over 3- and 7-fold higher risk of incident HF, 

compared with screen-negative patients (aHR 3.31 [95% CI, 3.08-3.55] and 7.11 

[95% CI, 6.42-7.88], respectively). Higher model probabilities were progressively 

associated with a higher risk of incident HF across various probability bins (Table 

S5). 

These patterns were replicated across both UKB and ELSA-Brasil, with a 0.1 

increase in model probability associated with 81% and 93% higher risk of incident 

HF (aHR 1.81 [95% CI, 1.58-2.07] and aHR 1.93, [95% CI, 1.68-2.21], respectively, 

Table S5). A higher threshold for defining a screen-positive ECG consistently 

defined a higher hazard of incident HF (Table S6).  

 

Prediction of other cardiovascular outcomes 

A positive AI-ECG screen was also associated with a more modest but still elevated 

risk of AMI (aHR, 1.44; 95% CI, 1.04-2.00), all-cause death (aHR 1.19 [95% CI, 

1.15-1.24]), or MACE, defined by AMI, stroke, HF, or death (aHR 2.10 [95% CI, 2.04-

2.17]; Table S4) with the YNHHS. Similarly, in the UKB, a positive AI-ECG screen 

was associated with an elevated risk for AMI and stroke (aHRs 3.16 [95% CI, 1.98-

5.02] and 2.30 [95% CI, 1.36-3.9], respectively), all-cause death (aHR 2.13 [95% CI, 

[1.41-3.24]), and MACE (aHR 2.79 [95% CI, 2.17-3.6]; Table S4). This pattern was 

replicated in ELSA-Brasil across all non-HF cardiovascular outcomes of AMI (aHR 

3.53 [95% CI, 1.4-8.85]), stroke (aHR 5.74 [95% CI, 2.59-12.72]), death (aHR 3.64 
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[95% CI, 2.27-5.83]), and MACE (aHR 4.04 [95% CI, 2.77-5.89]), with a comparably 

smaller increase in risk of non-HF cardiovascular events than HF risk.  

 

Comparison with PCP-HF 

In YNHHS, the AI-ECG model had a model discrimination based on Harrel’s c-

statistic of 0.718 (0.697-0.738), compared with 0.601 (0.581-0.621) for PCP-HF 

score (p <0.001; Table 3). In UKB and ELSA-Brasil, the AI-ECG’s model 

discrimination for incident HF was 0.769 (95% CI, 0.670-0.867) and 0.810 (95% CI, 

0.714-0.907), respectively, comparable to that for PCP-HF (UKB: p = 0.71; ELSA-

Brasil: p = 0.89). Across all cohorts, incorporating model probability with PCP-HF 

yielded a statistically significant improvement in discrimination over the use of PCP-

HF alone (YNHHS: 0.147 [95% CI, 0.124-0.170]; UKB: 0.127 [95% CI, 0.032-0.223]; 

ELSA-Brasil: 0.106 [95% CI, 0.030-0.181]; Table 3).  

 

DISCUSSION 

Across three clinically and geographically distinct cohorts, a deep learning model 

that was developed to define signatures of left ventricular systolic dysfunction on 

ECG images represents a non-invasive and accessible digital biomarker for 

predicting HF risk from ECG images as the sole input. A positive AI-ECG screen was 

associated with a 4- to 24-fold higher hazard of incident HF across different 

populations than a negative screen, consistent after accounting for competing risk of 

death. The model was evaluated in demographically and racially diverse cohorts, 

with high predictive performance across subgroups of age, sex, race, and ethnicity. 

We observed a progressive increase in risk based on the LV dysfunction probability 

on baseline ECG, such that graded increments in the model output probability were 
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associated with higher hazards of incident HF. A positive screen was also relatively 

specific for HF risk, with a 2-to-6-fold higher risk of HF than the risk of other 

cardiovascular outcomes, such as MACE and death. In addition to being 

substantially easier to use than PCP-HF that uses an ECG-derived measure in 

addition to substantial laboratory and clinical testing, the AI-ECG approach had 

incremental discrimination over PCP-HF. Therefore, deep learning-enhanced 

interpretation of ECG images can represent a scalable and reliable strategy for risk 

stratification for incident HF.  

 The ability to identify individuals at the highest risk for HF is crucial given the 

high clinical and economic impact of HF, along with the availability of evidence-

based risk-mitigating therapies.6–9 Thus, there has been substantial investigation into 

defining risk for HF.12–18 Notably, blood-based biomarkers have been a key focus on 

investigation, with an NT-proBNP of 125pg/ml associated with 2.4-fold higher risk of 

incident HF.10,18–20 This is further potentiated with the addition of hs-Tn.18,49 However, 

the application of these serum-based assays for HF risk is limited by the need for 

blood draws and laboratory testing.15,50 Similarly, PCP-HF, and other proposed HF 

risk scores, such as the Atherosclerosis Risk in Communities HF score or the Heart 

ABC model require detailed clinical history, physical examination, and testing for 

routine and specialized laboratory measures,8,11,16,21,51 such that these are not 

consistently recommended in clinical practice guidelines.  

While neural network-based models have previously been designed to detect 

prevalent systolic dysfunction or HF,27–34 our study suggests the role of an AI-ECG 

model as a biomarker for new-onset HF. This AI-based approach can enable 

opportunistic HF screening for patients undergoing clinical ECGs and also facilitate 

population-based screening approaches for HF.5 Moreover, given that ECGs are 
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most commonly available to clinicians and patients as digital images or printouts, the 

application of conventional signal-based AI-ECG models has been limited by access 

to raw input ECG voltage data.29–34 The image-based approach can use 

interoperable digital images or smartphone photographs of printouts, representing a 

scalable strategy for deployment in the community.27  

The predictive performance of our model was high across demographic 

subgroups, with the highest predictive power in younger individuals across cohorts. 

This suggests an opportunity for proactive HF screening in younger individuals, 

followed by implementing risk-mitigating strategies. Further, progressive increases in 

the AI-ECG score were associated with a progressively higher risk of HF. This dose-

dependence represents ideal characteristics for a predictive biomarker, enabling 

graded risk stratification and proactive mitigation in those at the highest predicted 

risk.14  

Our study has certain limitations that merit consideration. First, outcomes in 

the EHR are prone to inconsistent capture due to site-specific variability in coding 

practices,52,53 though we opted for a specific definition of HF. The association of a 

positive AI-ECG screen with the risk of HF across YNHHS and population-based 

cohorts at UKB and ELSA-Brasil indicates that the model captures a predictive 

signature of disease across a spectrum of disease phenotypes. Moreover, the 

patterns were consistent across several sensitivity analyses that defined these 

conditions differently in YNHHS and UKB. Further, in ELSA-Brasil, HF events were 

expert-adjudicated using established clinical criteria. Second, despite an integrated 

health system with broad geographic coverage, some HF and other outcome events 

may have occurred outside YNHHS, which may be reflected in the lower risk of HF 

and other events compared with the UKB and ELSA-Brasil, where the follow up was 
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consistent and protocolized. Therefore, the risk of HF observed for patients in the 

YNHHS likely represents the lower bound of their actual HF risk, based on the 

findings in the prospective cohorts. Moreover, the patients who underwent ECG 

testing were selected, with a risk for the unmeasured potential risk profile of those 

who underwent a clinical ECG but had a negative AI-ECG screen. Finally, while the 

study finds a high risk of subsequent HF, it is unclear whether the risk of HF 

identified by AI-ECG is modifiable. Nevertheless, these observations may suggest a 

focus on targeted identification and management of known HF risk factors. 

 

CONCLUSION 

An AI model applied to images of 12-lead ECGs can identify those at elevated risk of 

HF across multinational cohorts. As a digital biomarker of HF risk that requires just 

an ECG image, this AI-ECG approach can enable scalable and efficient screening 

for HF risk.  
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FIGURES 

Figure 1: Study Overview. Abbreviations: AI, Artificial Intelligence; ECG, 

Electrocardiogram; EHR, Electronic Health Records; LVSD, Left Ventricular Systolic 

Dysfunction; UKBB; UK Biobank; YNHHS, Yale New Haven Health System 
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Figure 2: Age- and Sex-adjusted Cumulative Hazard Curves for Incident Heart Failure across Bins of Model Output 

Probability at (A) Yale New Haven Health System (B) UK Biobank. Abbreviations: AI-ECG, Artificial Intelligence-enhanced 

Electrocardiogram; SD, standard deviation 
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TABLES 
 
Table 1. Population Characteristics of the Study Cohorts.  
Abbreviations: AMI, acute myocardial infarction; ECG, Electrocardiogram; ELSA-
Brasil, Brazilian Longitudinal Study of Adult Health; HF, heart failure; IQR, 
Interquartile Range; UKB, UK Biobank; YNHHS, Yale New Haven Health System 
 
 

 
  

Characteristic YNHHS  UKB ELSA-Brasil 

Number 231285 42141 13454 

Age at ECG, Median [IQR] 57.4 [42.1,70.2] 65 [59,71] 51 [45,58] 

Female Sex, N (%) 130941 (56.6) 21795 (51.7) 7348 (54.6) 

Race/Ethnicity, 

N (%) 

White 145726 (63.0) 40691 (96.6) 6920 (51.4) 

Black 36605 (15.8) 304 (0.7) 2130 (15.8) 

Hispanic 36298 (15.7) - - 

Asian 4221 (1.8) 600 (1.4) 332 (2.5) 

Other 2565 (1.1) 546 (1.3) 305 (2.3) 

Brazilian “Pardo” - - 3767 (28.0) 

Missing 5870 (2.5) - - 

Death, N (%) 17380 (7.5) 346 (0.8) 229 (1.7) 

Follow-up Time, Years; Median [IQR] 4.5 [2.5,6.6] 3.1 [2.1,4.5] 4.2 [3.7, 4.5] 

Positive Screens, N (%) 17868 (7.7) 1142 (2.7) 239 (1.8) 

Primary HF hospitalization during follow-up, N (%) 4472 (1.9) 46 (0.1) 31 (0.2) 

Primary HF hospitalization or an echocardiogram 

with LVEF < 50% during follow-up, N (%) 
9645 (4.2) - - 

Any HF hospitalization during follow-up, N (%) 19004 (8.2) 231 (0.5) - 

Any HF hospitalization or an echocardiogram with 

LVEF < 50% during follow-up, N (%) 
21849 (9.4) - - 

Primary AMI hospitalization during follow-up, N (%) 288 (0.1) 208 (0.5) 60 (0.4) 

Primary Stroke hospitalization during follow-up, N 

(%) 
3688 (1.6) 210 (0.5) 59 (0.4) 

Major Adverse Cardiovascular Events during follow-

up, N (%) 
24059 (10.4) 768 (1.8) 338 (2.5) 
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Table 2. Model Performance for Predicting Heart Failure Risk.  
Abbreviations: ELSA-Brasil, Brazilian Longitudinal Study of Adult Health; HTN, 
hypertension; T2DM, type-2 diabetes mellitus; UKB, UK Biobank; YNHHS, Yale New 
Haven Health System 
 
 

 

 

  

Model  Covariates YNHHS UKB ELSA-Brasil 

Cox Proportional Hazard 

Model 
Positive Screen 6.51 (6.11-6.93) 18.33 (9.90-33.97) 32.06 (15.36-66.92) 

Cox Proportional Hazard 

Model 

Positive Screen + Age 

+ Sex 
3.88 (3.63-4.14) 12.85 (6.87-24.02) 23.50 (11.09-49.81) 

Cox Proportional Hazard 

Model 

Positive Screen + Age 

+ Sex + HTN + T2DM 
3.73 (3.50-3.99) 11.36 (6.04-21.36) 17.36 (8.55-35.26) 

Fine-Gray Subdistribution 

Hazard Model 

Positive Screen + Age 

+ Sex + Competing 

Risk of Death 

3.54 (3.30-3.79) 12.70 (6.70-24.07) 22.79 (10.21-50.89) 

Fine-Gray Subdistribution 

Hazard Model 

Positive Screen + Age 

+ Sex + HTN + T2DM + 

Competing Risk of 

Death 

3.41 (3.18-3.65) 11.14 (5.72-21.70) 17.96 (8.14-39.61) 
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Table 3. Comparison of Discrimination for AI-ECG Model Output Probability 
and Pooled Cohort equations to Prevent Heart Failure for Incident Heart 
Failure. Abbreviations: ELSA-Brasil, Brazilian Longitudinal Study of Adult Health; 
PCP-HF, Pooled Cohort equations to Prevent Heart Failure; UKB, UK Biobank; 
YNHHS, Yale New Haven Health System. 
 

Covariates 

YNHHS UKB ELSA-Brasil 

Harrel’s c-

statistic 

Marginal 

difference 

over Harrel’s 

c-statistic for 

PCP-HF 

P-value 
Harrel’s c-

statistic 

Marginal 

difference 

over Harrel’s 

c-statistic for 

PCP-HF 

P-value 
Harrel’s c-

statistic 

Marginal 

difference 

over Harrel’s 

c-statistic for 

PCP-HF 

P-value 

PCP-HF  
0.601 

(0.581-0.621) 
- - 

0.740 

(0.647-0.834) 
- - 

0.821 

(0.748-0.893) 
- - 

AI-ECG Model 

Output 

Probability 

0.718 

(0.697-0.738) 

0.117 

(0.086-0.147) 
<0.001 

0.769 

(0.670-0.867) 

0.028  

(-0.119-0.175) 
0.71 

0.810 

(0.714-0.907) 

0.010 

(-0.149-0.130) 
0.89 

AI-ECG Model 

Output 

Probability + 

Age + Sex 

0.724 

(0.705-0.743) 

0.122 

(0.098-0.148) 
<0.001 

0.832 

(0.756-0.910) 

0.092 

(-0.014-0.198) 
0.09 

0.881 

(0.820-0.942) 

0.060 

(0.039-0.159) 
0.23 

AI-ECG Model 

Output 

Probability + 

PCP-HF 

0.748 

(0.730-0.766) 

0.147 

(0.124-0.170) 
<0.001 

0.868 

(0.810-0.926) 

0.127 

(0.032-0.223) 
0.008 

0.926 

(0.886-0.966) 

0.106 

(0.030-0.181) 
0.006 
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