Enhancing patient stratification and interpretability through class-contrastive and feature attribution techniques
Sharday Olowu, Neil Lawrence, View ORCID ProfileSoumya Banerjee
doi: https://doi.org/10.1101/2024.03.25.24304824
Sharday Olowu
1University of Cambridge, Cambridge, UK
Neil Lawrence
1University of Cambridge, Cambridge, UK
Soumya Banerjee
1University of Cambridge, Cambridge, UK
Data Availability
All data is available to download at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57945
https://github.com/Sharday/Enhancing_patient_stratification_explainable_AI
Posted March 26, 2024.
Enhancing patient stratification and interpretability through class-contrastive and feature attribution techniques
Sharday Olowu, Neil Lawrence, Soumya Banerjee
medRxiv 2024.03.25.24304824; doi: https://doi.org/10.1101/2024.03.25.24304824
Subject Area
Subject Areas
- Addiction Medicine (399)
- Allergy and Immunology (710)
- Anesthesia (201)
- Cardiovascular Medicine (2946)
- Dermatology (249)
- Emergency Medicine (440)
- Epidemiology (12752)
- Forensic Medicine (12)
- Gastroenterology (828)
- Genetic and Genomic Medicine (4587)
- Geriatric Medicine (419)
- Health Economics (729)
- Health Informatics (2918)
- Health Policy (1069)
- Hematology (389)
- HIV/AIDS (924)
- Medical Education (426)
- Medical Ethics (115)
- Nephrology (469)
- Neurology (4361)
- Nursing (236)
- Nutrition (639)
- Oncology (2271)
- Ophthalmology (647)
- Orthopedics (258)
- Otolaryngology (325)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (501)
- Pediatrics (1197)
- Primary Care Research (496)
- Public and Global Health (6944)
- Radiology and Imaging (1529)
- Respiratory Medicine (915)
- Rheumatology (438)
- Sports Medicine (385)
- Surgery (489)
- Toxicology (60)
- Transplantation (212)
- Urology (181)