Enhancing COVID-19 Forecasting Precision through the Integration of Compartmental Models, Machine Learning and Variants
View ORCID ProfileDaniele Baccega, View ORCID ProfilePaolo Castagno, View ORCID ProfileAntonio Fernández Anta, View ORCID ProfileMatteo Sereno
doi: https://doi.org/10.1101/2024.03.20.24304583
Daniele Baccega
1Computer Science Department, Università di Torino, Italy
3Laboratorio InfoLife, Consorzio Interuniversitario Nazionale per l’Informatica (CINI), Italy
Paolo Castagno
1Computer Science Department, Università di Torino, Italy
Antonio Fernández Anta
2IMDEA Networks Institute, Madrid, Spain
Matteo Sereno
1Computer Science Department, Università di Torino, Italy
Posted March 24, 2024.
Enhancing COVID-19 Forecasting Precision through the Integration of Compartmental Models, Machine Learning and Variants
Daniele Baccega, Paolo Castagno, Antonio Fernández Anta, Matteo Sereno
medRxiv 2024.03.20.24304583; doi: https://doi.org/10.1101/2024.03.20.24304583
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (718)
- Anesthesia (210)
- Cardiovascular Medicine (3002)
- Dermatology (256)
- Emergency Medicine (449)
- Epidemiology (12899)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4698)
- Geriatric Medicine (432)
- Health Economics (742)
- Health Informatics (2986)
- Health Policy (1081)
- Hematology (399)
- HIV/AIDS (942)
- Medical Education (439)
- Medical Ethics (116)
- Nephrology (481)
- Neurology (4486)
- Nursing (239)
- Nutrition (657)
- Oncology (2329)
- Ophthalmology (659)
- Orthopedics (262)
- Otolaryngology (330)
- Pain Medicine (290)
- Palliative Medicine (85)
- Pathology (506)
- Pediatrics (1218)
- Primary Care Research (509)
- Public and Global Health (7073)
- Radiology and Imaging (1570)
- Respiratory Medicine (933)
- Rheumatology (454)
- Sports Medicine (390)
- Surgery (497)
- Toxicology (62)
- Transplantation (214)
- Urology (187)