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ABSTRACT9

Predicting epidemic evolution is essential for informed decision-making and guiding the implementation of necessary coun-
termeasures. Computational models are vital tools that provide insights into illness progression and enable early detection,
proactive intervention, and targeted preventive measures.
This paper introduces Sybil, a framework that integrates machine learning and variant-aware compartmental models, leveraging
a fusion of data-centric and analytic methodologies. To validate and evaluate Sybil’s forecasts, we employed COVID-19 data
from two European countries. The dataset included the number of new and recovered cases, fatalities, and variant presence
over time. We evaluate the forecasting precision of Sybil in periods in which there is a change in the trend of the pandemic
evolution or a new variant appears. Results demonstrate that Sybil outperforms a conventional data-centric approach, being
able to forecast accurately the changes in the trend, the magnitude of these changes, and the future prevalence of new variants.
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Introduction12

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, highlights the intricate challenges of addressing the most13

impactful global health crisis of the 21st century. The rapid global spread of the virus has affected nearly every part of the14

world. Consequently, healthcare systems worldwide are grappling with the significant challenge posed by COVID-19, requiring15

a continuous COVID-19 monitoring system that includes robust surveillance, widespread testing, contact tracing, and can be16

used to plan and deploy stringent infection control measures.17

Establishing a continuous monitoring system aids policymakers in effectively managing the socio-health emergency brought18

about by the epidemic. Accurate forecasting is a fundamental element of such a system, and is crucial for efficient planning,19

resource allocation, and decision-making within public health authorities. It facilitates the development of proactive measures,20

such as vaccination campaigns, travel advisories, and community engagement programs, fostering public awareness and21

participation in disease control efforts. This proactive approach enhances preparedness and is critical in curbing the spread of22

infectious diseases and mitigating their impact on communities worldwide. Epidemic forecasting involves a multidisciplinary23

approach, integrating epidemiology, mathematical modeling, data analysis, and computational methods to gain insights into the24

future progression of outbreaks.25

Numerous methodologies are available for predicting the future trajectory of an epidemic, leveraging diverse modeling26

approaches. Particularly, machine learning (ML) models1–3 and especially deep learning (DL) models, including Convolutional27

Neural Networks (CNNs), Recurrent Neural Networks (RNNs) featuring Long Short-Term Memory (LSTM) or Gated Recurrent28

Unit (GRU) cells, and multivariate CNNs4–6, have emerged as highly prominent approaches for forecasting. Several studies use29

a combination of multiple data-centric approaches (e.g., a machine learning model with ARIMA or Prophet7). Despite their30

increasing popularity, surpassing conventional techniques such as auto-regressive models (e.g., ARIMA, SARIMA)2, 5, 8, these31

data-centric approaches exhibit notable limitations. First of all, predictions are not easily explainable, and secondly, they often32

fail to predict changes in the trend, such as peaks or the appearance of new variants.33

On the other hand, compartmental models9–11 and stochastic transmission models12 are analytic approaches specifically34

tailored to reproduce the evolution of an infection in a population and in the presence of variants13–16. These models incorporate35

factors such as population demographics, rates of infection, recovery, and mortality, providing a mathematical representation of36
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epidemic progression17, 18. This transparency simplifies explaining and interpreting the results to policymakers, healthcare1

professionals, and the general public, thus fostering a better understanding and informed decision-making. Indeed, several2

COVID-19 forecasting studies incorporate data-centric and analytical approaches, such as a combination of compartmental3

models and ARIMA19, and several other combinations20.4

Forecasting the epidemic spread aims to accurately predict the percentage of the infected population at a given point in5

the future, the number of fatalities, hospitalizations, and so on. However, these percentages result from complex population6

dynamics that often show nonlinear behaviors, particularly at critical points where there are changes in the infection course—7

such as at the peak of the diffusion or when a new variant arises. Conversely, epidemics dynamics are often characterized8

by widely recognized quantities. The most well-known is the basic reproduction number, R0, which express the number of9

secondary infection arising from one single infected individual within a population of susceptible individuals. Although R0 is10

useful to characterize if and how fast a disease spreads in a population, its time-dependent counterpart, Rt, enables a quantitative11

evaluation of the infection course. Such indicators, being specific to the disease, tend to be stable. Therefore, their future12

evolution shows a more predictable behavior.13

Following the approach of combining data-driven approaches with analytical models, we propose Sybil, an integrated14

machine learning and variant-aware compartmental model framework capable of providing improved prediction accuracy and15

explainability. Sybil exploits the relative stability of disease characteristics indices to project in the future and employs a simple16

and widely recognized analytical model to draw the infection dynamic. Sybil’s strengths mark the difference with approaches17

present in the literature thanks to i) its capability of providing accurate forecasts, even when there are relevant changes in18

the diffusion process, and ii) reduced need for training data. Furthermore, the approach offers iii) the possibility to study the19

evolution of the infection of several variants and iv) the replicability of the results. Additionally, v) the open-source code is20

available online.21

The joint use of ML and analytical models is gaining momentum in computational epidemiology. Still, to the best of22

our knowledge, Sybil outperforms the available solutions in several aspects, such as its explainable and reproducible results.23

For instance, in19, the authors use a compartmental model combined with a predictive model of the pandemic to forecast24

its evolution 60 days in the future, building their approach on the observed data in Kenya. In particular, they propose to25

estimate the parameters of the compartmental model—precisely the effective reproductive number—using ARIMA and then26

to use the predicted values to forecast the pandemic with a SEIR compartmental model. Specifically, the authors design a27

compartmental model accounting for symptomatic and asymptomatic individuals, as well as mild and severe cases. Despite the28

many similarities, Sybil employs a much simpler compartmental model, which enables us to consider variants and still have a29

model without significant complexities. Also, using ARIMA makes the approach in19 less suitable for continuous monitoring30

platforms. It also makes it harder to apply the same methodology to other scenarios. Eventually, results presented in19 are not31

validated against historical data, and the forecasting accuracy is not easy to assess.32

Methods33

We propose an integrated framework aimed at providing accurate and explainable predictions for epidemic spreads. Sybil34

combines a simple compartmental model with a machine learning-based predictive model to forecast the future progression of35

infection, even in the presence of multiple virus strains. At the core of Sybil, there is a simple analytical model which has a dual36

functionality. In the first stage of Sybil’s operation, the analytical model is used to derive the value of critical model parameters37

from the surveillance data. Then, these parameters’ values—ascribable to the reproductive number over time, Rt—are used as38

training data for the ML component of Sybil. Based on that knowledge, it predicts the future values for the key parameters,39

which are then plugged back into the analytical model. Then, Sybil computes the future evolution of daily infections using the40

analytical model with these key parameters’ future values.41

The performance evaluation of Sybil’s forecast is made by i) comparing it against the real data coming from the active42

surveillance of the pandemic situation in several European states and ii) comparing it against forecasts obtained by a ML43

approach. In this latter case, we use Prophet21 to predict the evolution of the different active variants in the considered period,44

representing a typical forecasting approach based on ML.45

Compartmental analytical model46

The first component of Sybil is the analytical model. In the field of computational epidemiology, compartmental models are47

widely recognized and employed to study the spreading of an infection in a population. Also, compartmental models are48

easy to explain: the model contains several compartments, each representing a specific subpopulation, and uses rates to move49

individuals from one compartment to another. The simplest compartmental model to mimic the evolution of an infection in a50

population requires only two compartments and one rate; the two compartments represent the only two possible states of the51

individuals in the population—either susceptible (S) or infected (I)—and one transition rate that represents the pace at which52
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one infected individual infects a susceptible one. Because of the two states characterizing this model, it is commonly known as1

the Susceptible-Infected (SI) model.2

In order to capture some critical features of the SARS-CoV-2 infection, an SI model is not suitable, and a more complex one3

is required. Specifically, we need to model the end of the infected period explicitly, i.e., when an infected person recovers from4

the illness. Additionally, fatalities and reinfections must be taken into account. Hence, the compartmental model incorporated5

in Sybil has two additional compartments, one accounting for individuals recovered from the infection (R) and one for the6

deceased (D), with the corresponding rates. Specifically, the model used is a Susceptible-Infected-Recovered-Deceased-7

Susceptible (SIRDS) compartmental model with reinfections—represented in Figure 1-(a)— that is described by the system of8

difference equations in Equation 1. In this system, β represents the infection rate, γ the recovery rate, λ the fatality rate, ν the9

end-of-immunization rate, and N the total population.10

S(t̃ +1) = S(t̃)−βββ (((t̃tt)))
S(t̃)I(t̃)

N
+νR(t̃)

I(t̃ +1) = I(t̃)+βββ (((t̃tt)))
S(t̃)I(t̃)

N
− γγγ(((t̃tt)))I(t̃)−λλλ (((t̃tt)))I(t̃)

R(t̃ +1) = R(t̃)+ γγγ(((t̃tt)))I(t̃)−νR(t̃)

D(t̃ +1) = D(t̃)+λλλ (((t̃tt)))I(t̃)

(1)

In this model, the rates are time-dependent—meaning that they may vary at each time step, with the time step corresponding11

to one day. The only exception is end-of-immunization rate ν , which is assumed to be ν = 1
180 , since on average the12

immunization due to infection is estimated to be lost after 180 days22.13

Using the surveillance data—possibly after a pre-processing phase—, Sybil computes the evolution of the infection process14

by solving the SIRDS model in Equation 2, where ∆I(t̃) represents the new infected at time t̃, ∆R(t̃) the new recoveries at time15

t̃ and ∆D(t̃) the new deceases at time t̃ (with S(0) = N and I(0) = R(0) = D(0) = 0).16

However, obtaining all the required parameters to solve equations in Equation 1 is not straightforward. Indeed, surveillance17

data does not provide the transition rates—namely, the bold elements in the system of difference equations—and hence a further18

step is required: using Equation 3 (obtained from Equation 1), we can estimate the daily infection, recovery, and fatality rates.19

S(t̃ +1) = S(t̃)−∆I(t̃)+νR(t̃)

I(t̃ +1) = I(t̃)+∆I(t̃)−∆R(t̃)−∆D(t̃)

R(t̃ +1) = R(t̃)+∆R(t̃)−νR(t̃)

D(t̃ +1) = D(t̃)+∆D(t̃)

(2)

λ (t̃) =
D(t̃ +1)−D(t̃)

I(t̃)
if I(t̃)> 0 else λ (t̃) = 0

γ(t̃) =
R(t̃ +1)−R(t̃)+νR(t̃)

I(t̃)
if I(t̃)> 0 else γ(t̃) = 0

β (t̃) =
I(t̃ +1)− I(t̃)+ γ(t̃)I(t̃)+λ (t̃)I(t̃)

S(t̃)I(t̃)
N if S(t̃)I(t̃)> 0 else β (t̃) = 0

(3)

Bringing in variants into the model of Equation 1 requires introducing one additional compartment to account for infections20

caused by each virus strain, hence obtaining an SIVRDS model, where the superscript at the I stands for the maximum number21

of virus strains included in the model (see Figure 1-(b)). After introducing further compartments, also additional rates are22

necessary. Specifically, instead of a global infection rate β (t̃), there are V different infection rates—one for each variant—for23

each time step t̃. Making a simplifying assumption, Sybil assumes that the evolution of the Iv(t̃) compartment—for each variant24

v and for each time step t̃—is computed starting from the evolution of the I(t̃) compartment of the model without variants25

and the daily proportion of the considered variant; that is, Iv(t̃) = I(t̃)πv(t̃), where πv(t̃) is the proportion of infections due to26

variant v at time t̃. Moreover, we assumed no correlations among variants and that being recovered from a variant v makes a27

person immune from all variants (and after 1
ν

days, in average, a person will be susceptible again).28

Iv(t̃ +1) = Iv(t̃)+βββ v(((t̃tt)))
S(t̃)I(t̃)

N
− γ(t̃)Iv(t̃)−λ (t̃)Iv(t̃) v ∈ {1...V}

(4)
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β v(t̃) =
Iv(t̃ +1)− Iv(t̃)+ γ(t̃)Iv(t̃)+λ (t̃)Iv(t̃)

S(t̃)I(t̃)
N v ∈ {1...V} (5)

Equation 4 describes the evolution of the Iv compartments. Here, we used the previously computed global recovery and1

fatality rates, and βv(t̃) is a column vector with the time-dependent infection rates of V variants—in the supplementary material2

we have detailed these assumptions. Eventually, Equation 5 (obtained from Equation 4) describes how to compute the infection3

rates β v(t̃) for the v variant.4

It is worth noticing that in devising infection and fatality rates from surveillance data, we incorporate all the effects due to5

the different virus strains and the impact of contention policies, even if such details are not explicitly detailed in the model.6

Prophet predictive model7

The second component of the Sybil framework is Prophet21, an open-source framework developed by Facebook for time series8

forecasting. It is based on an additive model design and it has been conceived to have intuitive parameters that can be adjusted9

without knowing the details of the underlying model. The modeling approach of Prophet combines the strengths of both10

statistical modeling and machine learning techniques; it utilizes a generalized additive model that incorporates piece-wise linear11

trends, nonlinear growth, and seasonality adjustments using a Fourier series. This flexible modeling approach enables Prophet12

to capture simple and complex data patterns. In particular, it consists of three main model components: trend, seasonality, and13

holidays combined in the following equation:14

y(t̃) = g(t̃)+ s(t̃)+h(t̃)+ ε t̃ (6)

where g(t̃) is the trend function that models non-periodic changes, s(t̃) represents periodic changes (e.g., daily, weekly, and15

yearly seasonality), and h(t̃) represents the effects of holidays which occur on potentially irregular schedules over one or more16

days. The error term ε t̃ represents any characteristic changes that are not accommodated by the model. Furthermore, Prophet17

makes it possible to estimate uncertainty in trend forecasts. It employs Markov Chain Monte Carlo (MCMC) to generate many18

plausible future trajectories. The MCMC procedure randomly samples from the posterior distribution of the model parameters,19

allowing for a range of possible outcomes. These sampled parameter sets are then used to generate multiple forecast trajectories.20

Data21

All datasets used in this work are open source and publicly available. The surveillance data used for Italy and Austria in the22

Results section are available in the COVID19 R library23, 24 (for the results presented in the Results section we used a snapshot23

dated November 22nd, 2023). This data comprises all the data reported in Figures 2 to 6 plus other data not relevant to the24

present study—such as the number of vaccinations, tests, hospitalizations and people in intensive care, information about25

applied countermeasures, data on mobility, etc. In particular, from the COVID-19 Data Hub23, 24, we used the following data26

(from February 2020 to May 2023): the cumulative number of cases, the cumulative number of recoveries, the cumulative27

number of deaths, and the total population. Starting from these, we computed the daily new cases, the daily new recoveries, and28

the daily new deaths we used in Equation 2.29

Information about active virus strains comes from the European Center for Disease Control (ECDC), specifically, the30

one reported in25, 26 (for the results presented in the Results section we used a snapshot dated July 25th, 2023). Here, ECDC31

collected the result of serological tests, and there is information about a significant number of variant lineages, such as B.1.1.7,32

BA.1, BA.2, P.1, XBB, and many others. To use such data, we aggregated these lineages in four main variant families with the33

aim of using the WHO variants labels: Alpha, Delta, Omicron, and Other27. In particular, the Other variant comprises the34

initial SARS-CoV-2 lineage, all the other lineages (e.g., Beta, Gamma, Kappa), and some noisy values in the surveillance data.35

Since variants’ diffusion data is provided weekly, in a pre-processing phase, we expanded such data to devise approximated36

daily values. Specifically, we employed splines—piece-wise-defined mathematical functions that use multiple polynomial37

segments to create a smooth and continuous curve—to obtain daily values.38

In the following section, we used time-dependent recovery rates thanks to data availability for the selected countries—39

namely Italy and Austria. However, surveillance data available for many countries worldwide does not report data to devise40

daily recovery rates. Hence, to dispense with data on recoveries, in the supplementary material we report results obtained with41

fixed recovery rate with mean 1
γ

equals to 14 days—same for each variant. The results obtained are promising and show the42

robustness of the Sybil approach.43

Results44

This section starts focusing on surveillance data from Italy and spanning a period from February 2020 to May 2023. During45

this period, there are a significant number of lineages, some coexisting and others with an evolutionary advantage taking over.46

In Figure 2, lineages are aggregated into the four main variants introduced above.47
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Accurate forecasts strongly depend on the regularity of the data to predict: it is pretty easy to foresee the future evolution of1

some dimensions increasing—or equally decreasing—linearly. Conversely, predicting the behavior in the presence of sudden2

changes in those quantities is much harder. Unfortunately, outbreaks, as well as peak infection fading, exhibit such a behavior.3

Vertical dashed lines in Figure 2 mark the time point picked to evaluate the accuracy of Sybil. The first two selected points4

are placed in the ascending part of an outbreak but close enough to the peak for accurate predictions, Sybil must successfully5

reproduce a change in the concavity of the function. The third selected point is placed just before the start of Omicron’s6

outbreak to show that Sybil is also able to predict a new emerging variant/outbreak. Further experiments and scenarios are7

available in the supplementary material.8

The first forecast scenario corresponds to the first infection wave, which in Italy started in February 2020. Only one9

SARS-CoV-2 strain was detected during this initial wave, namely the Other variant of Figure 2. Figure 3-(a) reports four10

different forecasts, all starting on April 15th 2020 and spanning several forecast windows—from one to four weeks. For each11

forecasting window, we compare predictions obtained using Sybil (green line) and the standard approach used in the literature12

(red line), which requires using the selected forecasting approach—Prophet in our case—to project the number of infections13

in the coming weeks. The two approaches use the same period as training data (black line) for a fair comparison. They are14

compared and contrasted against the surveillance data for the period spanning the forecasting window (blue line). Comparing15

predictions obtained with the plain use of Prophet to forecast the evolution of the number of daily infections, we notice that it16

fails to predict the plateau characterizing the highest part of the peak. Considering Sybil’s predictions, we see that starting from17

short-term predictions—i.e., seven days—it catches the decreasing trend. Increasing the forecasting window, Sybil always18

provides an excellent approximation of the future evolution of the daily infections, but for four weeks. In this latter case,19

Sybil’s predictions diverge in magnitude from the ground truth, but not in trend. It provides a qualitative indication of the future20

evolution of the pandemic, which eventually fades. Figure 3-(b) shows the infection rate βv(t̃) for the observation period. Here,21

we clearly see that the values for the infection rate are noisy; what we see is not a smooth line, but saw-tooth function with22

many peaks and valleys. Nonetheless, the range of variation of that function is limited and with a clear trend, which Sybil easily23

learns and replicates.24

The second scenario considers a period spanning the highest peak in the data set. Here, we consider the period from25

December 13th 2021 to January 13th 2022 as training data, and we forecast the daily infections for the period January-February26

2022 (starting from January 14th). In Italy, there were three active variants within this time window: Omicron, Delta, and the27

Other variant. Figure 4-(a) shows the number of daily infections for the three active variants and compares the ground truth28

(dashed line) with Sybil’s forecasts for one to four weeks. Again, forecasts are highly accurate for seven to twenty-one days29

long predictions and slightly anticipate the peak’s descendent phase at four weeks. In Figure 4-(b), the two approaches are30

contrasted against the ground truth. Like the first scenario, the Prophet’s predictions do not capture the peak. Not only do31

Prophet’s predictions get far from the real data—they grow while the infection fades—but, in this scenario, they do not even32

provide a valid qualitative prediction.33

The third point picked to test Sybil’s predictions falls just before the explosion of the largest outbreak caused by the Omicron34

variant. In particular, Figure 5 shows how the one-week forecast changes moving the training window from December 18th,35

2021 to December 27th, 2021. In this scenario, the ascending trajectory is very steep, and Sybil finds it harder to calibrate with36

respect to the previous cases. Here, the Omicron variant is a new emerging variant and Sybil initially foresees a more aggressive37

exponential growth. Looking at Figure 5 we can state that Sybil nailed the qualitative prediction, but needed more data to38

calibrate it. We can also see that Sybil captures well the prediction on the other active variant—the Delta variant. Here we are39

showing the best results obtained in this scenario. In the supplementary material we provide more details on this scenario and40

show another case where an explosive outbreak occurs, discussing the convenience of establishing a continuous monitoring41

system.42

Sybil provides a robust, easily portable approach to different use cases without requiring modifications. For instance, in43

Figure 6 we apply Sybil to surveillance data from Austria. Figure 6-(a) shows the daily infections for the different SARS-CoV-244

strains active in the period from February 2020 to May 2023. As in the case of Italy, lineages are grouped into four main virus45

strains—Alpha, Delta, Omicron, and the Other variant. In Figure 6-(b), data from January 1st 2022 to February 1st 2022 are46

employed to train the models, and we compare forecasts obtained for February 2022 (starting from February 2nd). During this47

period, there were two active variants: Omicron and the Other variant, as in the second scenario considered for Italy. The initial48

point chosen for the forecasts is again placed in the surroundings of the highest peak so that correctly predicting the future49

evolution of the infection is much more challenging. Nonetheless, Sybil shows high accuracy in predicting the future trajectory50

of the infection; despite a slightly different evolution, Sybil correctly predicts the diffusion slowdown, the successive decreasing51

phase. Eventually, prediction and surveillance data meet at the end of the four-week-long forecast.52
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Discussion1

ML approaches have already shown their power when dealing with complexity, thanks to their excellent capabilities in exploiting2

non-trivial correlations often inaccessible with other tools. Despite the many advantages of employing ML approaches, there3

are also some caveats worth noting. First, most of these approaches require a tremendous amount of data to learn from, and4

data available from the surveillance might not be enough for most ML approaches. Sybil faces this issue from two different5

standpoints; it employs Prophet, a hybrid approach, using ML techniques in combination with simulations—refer to the6

Prophet predictive model subsection for further details. On the other hand, Sybil does not face the challenge of forecasting the7

virus spread as a single task. First, it tries to predict the rates and then computes the future dynamics using a compartmental8

model. Therefore, Sybil, combining Prophet and compartmental models, exploits the two approaches in the respective field9

of application—where they perform the best—and strengthens the individual weaknesses. Specifically, by providing the10

compartmental model with parameters extracted from the real data or forecasts, there is no need to tune the model and estimate11

the missing parameters. Estimating model’s parameters is a resource-demanding and time-consuming task. Also, it is an12

activity tightly related to the specific situation or scenario under evaluation. This makes the model almost impossible to apply13

in a different setting without estimating the parameters again. Hence, Prophet makes Sybil’s approach easily deployable in14

new scenarios without requiring additional tasks, but the data must comply with the daily requirement. Likewise, the use of15

compartmental models in predicting the future trend of the infection makes results more straightforward to explain, for instance,16

to policymakers, who often do not trust predictions without a robust interpretation.17

In the Results section, we presented Sybil’s forecasts of different lengths for several European states and periods spanning18

from February 2020 to May 2023. To showcase Sybil’s capabilities, all the forecasting periods cover important changes in19

the first derivative of the number of daily infections. Then, Sybil’s predictions are contrasted against the surveillance data20

and the plain application of Prophet. Results shows the superiority of Sybil’s approach on the plain forecast of the number of21

daily infections; in particular, Sybil outperforms the plain application of Prophet when primary changes in the virus diffusion22

happens. For instance, Figure 4-(b) clearly shows the added value of Sybil approach: it predicts with great accuracy the peak23

of the current wave while Prophet alone fails to predict the decreasing phase of the infection peak. Further experiments and24

scenarios are available in the supplementary material. Here, for instance, some experiments made choosing forecasting periods25

far from peaks show that similar and accurate forecasting can be obtained using both approaches and new variants rising or new26

outbreaks can be predicted accurately using Sybil to set up a continuous monitoring system.27

The presented methodology is very close to being a continuous monitoring system, but strongly depends on the availability28

of data. In particular, in23, 24 there are few nations with a complete time series (with a daily step) for the data we used (i.e.,29

cumulative number of cases, cumulative number of deceases, cumulative number of recoveries). Possible extensions to this30

methodology would be to use a fixed recovery rate—same or different for each variant—to dispense with data on recoveries31

which are often not available—in the supplementary material we show some results related to this extension—and to include a32

pre-processing step using a technique (e.g., splines) to fill missing data and to move from a weekly to a daily step in case of33

availability of data with a weekly step—without alter too much the information present in the time series.34

Conclusion35

The global COVID-19 pandemic has brought to light the urgent necessity for sophisticated tools capable of monitoring and36

predicting the trajectory of infections within the population. This paper introduces a cutting-edge framework designed for37

continuous monitoring and forecasting, seamlessly integrating machine learning-based predictive models with compartmental38

models.39

Sybil distinguishes itself by delivering forecasts that are not only reliable but also readily explainable, as evidenced by40

thorough experimental validation. The adaptability of this innovative approach is clearly demonstrated through its successful41

application to diverse surveillance data from two European countries, specifically Italy and Austria.42

By integrating data-centric and analytic approaches, Sybil effectively addresses the inherent limitations of each method.43

This amalgamation not only enhances the tool’s ability to forecast the evolution of COVID-19 but also positions Sybil as a44

versatile instrument for predicting the trajectory of various other diseases, thus broadening its scope and impact in the field of45

infectious disease modeling.46
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Figures1

Figure 1. Compartmental models: (a) SIRDS and (b) SIVRDS. Dashed lines refer to the fact that an infection is due to
contacts among susceptible and infected individuals.
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Figure 2. Daily active cases in Italy from February 2020 to May 2023 for the four main SARS-CoV-2 strains. Vertical dashed
lines mark the selected dates to test Sybil’s forecasting.

10/14

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2024. ; https://doi.org/10.1101/2024.03.20.24304583doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.20.24304583
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3. The figures refer to the first scenario in which we forecast starting from April 14th 2020. Figure (a) shows the
evolution of infections using Sybil (green line) and Prophet (red line) using the same period as training data (black line)
comparing and contrasting the predictions against the surveillance data for the period spanning the forecasting window (blue
line). Figure (b) shows Sybil applied on the infection rate βv(t̃) of the Other variant (the red line shows the prediction, while
black and blue lines represent the training data and the ground-truth values extracted from the surveillance data, respectively).
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Figure 4. The figures refer to the second scenario in which we forecast starting from January 13th 2022. Figure (a) show the
evolution of infections using Sybil (the dashed line shows the prediction, while solid and dotted lines represent the training data
and the ground-truth values extracted from the surveillance data, respectively). Figure (b) shows the comparison between Sybil
(green line) and Prophet (red line) on the number of infections for the Omicron variant using the same period as training data
(black line) comparing and contrasting the predictions against the surveillance data for the period spanning the forecasting
window (blue line).
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Figure 5. Evolution of infections using Sybil on the third scenario. In the first plot we forecast starting from December 18th,
2021, while in second one we forecast starting from December 27th, 2021. Both the plots refer to a forecast one week into the
future. The dashed line shows the prediction, while solid and dotted lines represent the training data and the ground-truth
values extracted from the surveillance data, respectively.
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Figure 6. The figures show (a) the evolution of infections from February 2020 to May 2023 in Austria with the considered
forecast scenario and (b) the evolution of infections using Sybil on the considered scenario in which we forecast starting from
February 1st 2022 (the dashed line shows the prediction, while solid and dotted lines represent the training data and the
ground-truth values extracted from the surveillance data, respectively).
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