Abstract
Genome-wide association studies (GWAS) have been instrumental in identifying genetic associations for various diseases and traits. However, uncovering genetic underpinnings among traits beyond univariate phenotype associations remains a challenge. Multi-phenotype associations (MPA), or genetic pleiotropy, offer important insights into shared genes and pathways among traits, enhancing our understanding of genetic architectures of complex diseases. GWAS of biobank-linked electronic health record (EHR) data are increasingly being utilized to identify MPA among various traits and diseases. However, methodologies that can efficiently take advantage of distributed EHR to detect MPA are still lacking. Here, we introduce mixWAS, a novel algorithm that efficiently and losslessly integrates multiple EHRs via summary statistics, allowing the detection of MPA among mixed phenotypes while accounting for heterogeneities across EHRs. Simulations demonstrate that mixWAS outperforms the widely used MPA detection method, Phenome-wide association study (PheWAS), across diverse scenarios. Applying mixWAS to data from seven EHRs in the US, we identified 4,534 MPA among blood lipids, BMI, and circulatory diseases. Validation in an independent EHR data from UK confirmed 97.7% of the associations. mixWAS fundamentally improves the detection of MPA and is available as a free, open-source software.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
NIH R01 LM010098, AG066833, GM148494, LM014344, LM012607, LM013519, AI130460, AG073435, RF1AG077820, R56AG069880, R56AG074604, U01TR003709, R21AI167418 and R21EY034179. MDR was funded by R01HG010067 and R01HL169458.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
I confirm all relevant ethical guidelines have been followed, and all necessary IRB approvals have been obtained. UKBB Research Ethics Committee has approved the collection of the UK Biobank (UKBB) data. The UKBB genotype and phenotype data used in the study were obtained under application #32133. eMERGE is a national network organized and funded by the National Human Genome Research Institute (NHGRI). The eMERGE data was obtained under application NT432 I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
UK Biobank and eMERGE