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Abstract 
Genome-wide association studies (GWAS) have been instrumental in identifying genetic 
associations for various diseases and traits. However, uncovering genetic underpinnings among 
traits beyond univariate phenotype associations remains a challenge. Multi-phenotype 
associations (MPA), or genetic pleiotropy, offer important insights into shared genes and 
pathways among traits, enhancing our understanding of genetic architectures of complex 
diseases. GWAS of biobank-linked electronic health record (EHR) data are increasingly being 
utilized to identify MPA among various traits and diseases. However, methodologies that can 
efficiently take advantage of distributed EHR to detect MPA are still lacking. Here, we introduce 
mixWAS, a novel algorithm that efficiently and losslessly integrates multiple EHRs via summary 
statistics, allowing the detection of MPA among mixed phenotypes while accounting for 
heterogeneities across EHRs. Simulations demonstrate that mixWAS outperforms the widely 
used MPA detection method, Phenome-wide association study (PheWAS), across diverse 
scenarios. Applying mixWAS to data from seven EHRs in the US, we identified 4,534 MPA among 
blood lipids, BMI, and circulatory diseases. Validation in an independent EHR data from UK 
confirmed 97.7% of the associations. mixWAS fundamentally improves the detection of MPA and 
is available as a free, open-source software. 
 
Introduction 
Genome-wide association studies (GWAS) have systematically identified numerous genetic 
associations for various diseases and traits1–3. However, most GWAS SNPs have small to modest 
additive phenotypic effects, and merely detecting more genetic associations may not provide 
direct insights into the shared architectures of diseases and traits4–6. It has been observed that 
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many genetic variants are associated with more than one trait, referred to as multi-phenotype 
associations (MPA) or genetic pleiotropy7–9. Compared to single phenotype GWAS associations, 
MPA could reveal potential shared genes or pathways among traits and provide key insights into 
the disease pathogenesis8,10–13. Thus, identifying MPA is a crucial next step towards improved 
understanding of the genetic architectures of complex diseases. 
 
The increasing availability of biobank-linked electronic health record data (EHR), such as the UK 
Biobank (UKBB) and Electronic Medical Records and Genomics Network (eMERGE), improves 
our ability to detect MPA, since patients’ genetic data are matched with their extensive clinical 
records that can be extracted into disease phenotypes14–22. Utilizing multiple EHRs could improve 
the power to detect MPA, and at the same time, improve the reproducibility of the detected 
associations. However, computational methodologies that can fully take advantage of multiple 
EHR data to identify MPA are lacking. Phenome-Wide Association Studies (PheWAS) is the most 
widely used method to identify MPA, but its power is hindered by the multiple testing penalties 
due to the multiplicative number of tests between genetic variants and phenotypes23,24. Alternative 
methods have been developed for more efficient statistical tests but have been generally limited 
to continuous phenotypes or the analysis of individual datasets13,25. In reality, most EHR extracted 
phenotypes are of mixed continuous and binary outcomes. Extending methods to identify MPA 
using multiple EHRs is also challenging. Thus far, meta-analysis has been the primary approach 
to integrate GWAS or PheWAS results from multiple EHR to improve the detection of MPA13,26–29. 
However, meta-analyzed PheWAS has been suggested to be less powerful than the pooled mega 
analysis when detecting MPA across multiple EHRs14,29.  
 
To address these issues, we propose a computationally efficient framework, mixWAS, that can 
losslessly integrate multiple EHRs to detect MPA among mixed (binary and continuous) 
phenotypes. We implemented four key features in mixWAS to fulfill these goals. First, mixWAS 
can identify genetic associations among mixed-type phenotypes, including binary (e.g., case-
control) and continuous (e.g., lab measurements). Second, mixWAS can efficiently and losslessly 
integrate multiple EHRs to increase the overall sample size. Third, mixWAS is designed to handle 
phenotype and confounding covariate heterogeneity that may exist among different EHRs. For 
example, different age-onset for different diseases or block-wise missing data in some EHRs. 
Finally, mixWAS only requires data summary statistics from different EHRs, minimizing data 
transferring and communication costs.  
 
Using simulations, we first demonstrated that the mixWAS algorithm has better power than the 
commonly used PheWAS approach. Subsequently, the proposed method was utilized to detect 
MPA among cardiovascular related mixed-type phenotypes using patients from seven EHR data 
from eMERGE. We then validated our findings in the independent UKBB data. In total, mixWAS 
identified 4,534 associations in the integrated analysis using all eMERGE EHRs of which 4,428 
SNPs (97.7%) were validated by the independent UKBB data. In summary, the proposed mixWAS 
algorithm can efficiently integrate EHR data from multiple sources to detect MPA among mixed 
phenotypes, paving the way for discovering new insights into disease mechanisms and potential 
therapeutic targets. 
 
Result 
Overview of the mixWAS algorithm. mixWAS is designed to identify genetic variants that are 
associated with multiple diseases or traits using multiple distributed datasets. mixWAS is 
specifically tailored to handle mixed phenotypes (binary and continuous) with heterogeneous data 
distributions, as often observed in EHR data. The algorithm enables lossless integration of data 
from multiple sources by utilizing summary statistics of the datasets. The algorithm follows a three-
step process: First, intermediate summary statistics of genetic associations are calculated within 
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each distributed dataset. These summary statistics are then transmitted to a centralized server 
and analyzed by an analyst, who computes the components (score and variance) of the test 
statistic. Finally, the test statistics are derived, yielding p-values for subsequent inference (Figure 
1). 
 

Figure 1: Outline of the mixWAS algorithm. Each site transmits summary level statistics of 
heterogeneous, mixed-typed phenotypes, specifically the score vector 𝑆!(𝟎, 𝜸&𝒎)	and variance 
matrix 𝑉!, to a central analyst. The central analyst pools the site-specific score and variance 
contributions in a lossless manner for use in a score test, which is powerful against dense 
phenotypes, and a second test, robust to sparse phenotypes, which combines the 𝑝-values of 
individual score tests for each of 𝑞 phenotypes using the ACAT method30. Finally, these two 𝑝-
values, one optimized against dense phenotypes and the other optimized against sparse 
phenotypes, are combined again using the ACAT method.  

mixWAS is more powerful than PheWAS in detecting MPA across mixed-type phenotypes. 
PheWAS is the most commonly used method to detect MPA. In addition, unlike other methods 
for detecting MPA, PheWAS can be extended to handle mixed phenotypes in multiple datasets 
through meta-analysis. Thus, mixWAS was directly compared to PheWAS to evaluate its power 
to detect MPA. To this end, we conducted various simulation studies with diverse settings. Each 
simulation setting consisted of five independent datasets representing distributed sites. Within 
each dataset, we simulated MPA associations and confounding covariates, including principal 
components, age, and sex. Covariate effects for each phenotype were intentionally varied across 
datasets to reflect heterogeneity across sites. The true MPA associations were devised to two 
distinct scenarios in simulation studies: 1) Same direction: all phenotypes (binary and continuous) 
were positively or negatively associated with the genotype in the same direction, and 2) Opposite 
direction: half of the phenotypes had positive associations with the genotype and half had 
negative associations. We also incorporated additional factors such as signal sparsity, phenotype 
correlations, missing data, and different ratios of mixed phenotypes in our simulations. The 
simulated data was analyzed using mixWAS, PheWAS-Meta, and PheWAS-Mega, described 
briefly below. mixWAS generated intermediate summary-level statistics in each dataset and 
performed integration using these statistics to calculate the association p-values. In contrast, 
separate PheWAS analyses were conducted in each dataset under PheWAS-Meta, where the 
beta coefficients were combined using meta-analysis. In PheWAS-Mega, the five datasets were 
pooled to form a combined dataset, followed by a single PheWAS analysis. While not always 
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plausible in practice, this method was of interest as a point of comparison, since mixWAS uses a 
lossless decomposition that provides identical results to those that one would obtain by 
conducting the same score-based procedure if all individual information could be used. Finally, 
we ascertained the highest possible performance using an oracle model, by applying the score 
test for dense alternatives in the subset of phenotypes are associated with the SNP. Across all 
simulation settings, mixWAS consistently outperformed PheWAS (Figures 2 and 3). The gains in 
power by using mixWAS over PheWAS methods were greatest when the direction of SNP effects 
went against the direction of the residual correlation between phenotypes. For example, mixWAS 
outperformed PheWAS the most when SNP effects were positive and residual correlation was 
negative (Figure 2),  reflective of a setting where positive correlation genetic correlation exists 
among traits in the presence of negative environmental or other correlation. mixWAS also 
outperformed PheWAS methods when SNP effects had opposite signs with positive residual 
phenotype correlation (Figure 3). Such power gains result from the fact that unlike PheWAS 
methods, mixWAS accounts for correlation between phenotypes. The heterogeneity in MPA 
effects and the residual correlations are frequently encountered in practical settings, underscoring 
the practical usefulness of mixWAS. Type 1 errors were controlled at the nominal level for all 
methods. Additional simulations on binary-only phenotypes and designs using shared healthy 
controls further demonstrated the superior power of mixWAS compared to PheWAS 
(Supplementary Material). 
 
 

  
Figure 2: Empirical power curves comparing various cross-phenotype association tests for 
simulated mixed-type phenotypes. The simulated SNP is positively associated with all phenotypes, 
while the MPA sparsity (e.g. number of phenotypes with significant association) and correlation 
between phenotypes vary. Power curves of PheWAS Mega and PheWAS Meta closely overlap 
in the figure. 
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Figure 3: Empirical power curves comparing various cross-phenotype association tests for 
simulated mixed-type phenotypes. The simulated SNP is positively associated with all binary 
phenotypes and has both positive and negative associations with continuous phenotypes. MPA 
sparsity (e.g. number of phenotypes with significant association) and correlation between 
phenotypes vary. Power curves of PheWAS Mega and PheWAS Meta closely overlap in the figure. 

Detecting MPA across blood lipids levels, BMI, and diseases of circulatory system. 
Previous research has identified MPA between BMI and coronary heart disease 31,32, blood lipids 
levels33, and low-density lipoprotein, triglycerides, and cardiovascular diseases34. These studies 
have highlighted the existence of potential shared underlying genetic architecture among these 
traits/diseases. However, comprehensive investigations of MPA across all traits and diseases 
have not been carried out. Leveraging multiple EHR datasets and the improved efficiency of our 
proposed method, we utilized mixWAS to detect MPA among blood lipid levels (high-density 
lipoprotein (HDL), low-density lipoprotein (LDL), serum total cholesterol, and triglycerides), body 
mass index (BMI), and circulatory diseases (unspecified essential hypertension, type 2 diabetes 
(T2D), unspecified hyperlipidemia, benign essential hypertension, atrial fibrillation, congestive 
heart failure, and coronary atherosclerosis) using eMERGE data from 7 sites. The characteristics 
of the datasets are presented in Figure 4, illustrating heterogeneities among the EHRs, including 
variations in the number of patients and patterns of missing data. 
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Figure 4. Characteristics of the covariates and phenotypes from the eMERGE dataset. The x-
axis displays the phenotypes and covariates, and y-axis displays the number of participants in 
each dataset. The color indicates whether or not a value (binary or continuous) was present for 
the individual. 
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To identify MPA, we conducted three 
separate analyses: eMERGE single-site 
analysis, eMERGE integrated analysis via 
mixWAS, and external validation using the 
UKBB dataset. In all analyses, patients' sex, 
ten principal components accounting for 
population stratification, and trait-
associated ages were adjusted in the model. 
Notably, each trait was measured at a 
different associated age, leading to 
distinctive adjustments for each trait.  In the 
first analysis, mixWAS was individually 
applied to each eMERGE dataset to detect 
MPA. This allowed the assessment of the 
power of detecting MPA when each dataset 
was used independently. The Manhattan 
plots showed that datasets with smaller 
sizes (Marshfield, Northwestern, Geisinger, 
and Kaiser Permanente) exhibited lower 
power in detecting MPA compared to larger 
datasets (Mass General Brigham, 
Vanderbilt, and Mayo).  Next, an integrated 
analysis was performed by mixWAS utilizing 
all eMERGE datasets. This integrated 
analysis significantly increased the total 
sample size and identified a higher number 
of significant MPA compared to any 
individual dataset. The Bonferroni-corrected 
significant associations identified in the 
eMERGE integrated analysis were 
validated using the independent UK 
Biobank data. Out of 4,534 eMERGE 
associations, 4,428 (97.7%) were 
successfully replicated in the UKBB dataset, 
providing further validation for the identified 
associations (Figure 5). 
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Figure 5. Manhattan plots of MPA in eMERGE single site analysis, eMERGE integrated  
analysis, and UKBB validation. The association between each SNP and all phenotypes was 
tested using mixWAS. The resulting p-value of each SNP was -log10(p) transformed and plotted 
along the y-axis. SNPs with p-values lower than 5e-30 were replaced with 5e-30 and indicated by 
asterisk for visualization purpose. The genomic position of the SNP was plotted along the x-axis. 
The solid horizontal line indicates Bonferroni corrected p-value significance level, respectively to 
each data. SNPs above the significance threshold are plotted as red points in the eMERGE data 
and purple points in the UKBB data. 

mixWAS identified MPA are associated with multiple traits/diseases. mixWAS-identified 
MPA could potentially be associated with one or multiple traits. To explore the specific 
trait/disease driving these MPAs, an exhaustive analysis evaluating all possible combinations of 
trait and SNP associations (4,534 SNPs x 10 traits) were conducted in the UKBB dataset 
(Supplemental Table). The significance of the single trait associations was determined using the 
mixWAS related p-value threshold (Method). The analysis revealed that SNPs showed significant 
associations with between 0 to 8 traits, with 2 to 4 traits being the most common number (Figure 
6a). 

a          b 

 

Figure 6. a) The distribution of the number of traits associated with a SNP. Count (y-axis) 
reflects the number of SNPs with significant associations for varying numbers of phenotypes (x-
axis). Each association is determined using regression analysis, while adjusting for the 
Bonferroni-corrected p-value threshold. b) Common genetic variants shared among different 
traits. For each pair of phenotype combinations, the number of shared same SNP associations 
that surpassed the significant p-value threshold was calculated and transformed using a 
logarithmic scale, e.g., for 1000 shared associations, log(1000)= 6.9. The color intensity in the 
plot reflects the number of shared genetic variants, with darker shades indicating a higher number 
of shared associations. 

Variability in shared genetic variants. The number of genetic associations common to different 
traits exhibited variability. Blood lipid levels (LDL, HDL, Cholesterol, and Triglycerides) and BMI 
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displayed the highest number of shared genetic variants among the traits. Additionally, blood lipid 
levels demonstrated considerable overlap with genetic variants associated with coronary artery 
disease. For T2D, both blood lipid levels and BMI showed enrichment for shared genetic variants 
(Figure 6b).  

Improved detection powered by mixWAS. Among the initial pool of 4,534 candidate SNPs with 
detected MPAs across 10 traits, 13,770 significant single trait-SNP associations were identified 
in the UKBB dataset from. In comparison, directly applying PheWAS to the same SNPs in UKBB 
would only detect 11,581 significant associations due to the increased number of tests. 
Consequently, mixWAS detected 18.9% more trait-SNP associations in the UKBB dataset (Figure 
7). These additional associations were found for every trait except for heart failure, where neither 
mixWAS nor PheWAS identified any SNP associated with the disease (see Discussion). The 
results underscore the improved sensitivity and efficiency of mixWAS in detecting trait-SNP 
associations compared to traditional PheWAS approaches. 

 

Figure 7. Count of significant trait-SNP associations identified by mixWAS and PheWAS in 
the UKBB. Method-specific p-value thresholds were applied to mixWAS and PheWAS, 
corresponding to the number of comparisons performed. The associations detected by PheWAS 
are a subset of those identified by mixWAS, and are categorized as "mixWAS and PheWAS”. The 
"mixWAS only" category represents genetic associations that were exclusively identified by 
mixWAS and not by PheWAS. SNPs that were not considered significant by either method are 
represented by the "Neither" category. 

Functional annotation of mixWAS SNPs. The mixWAS SNPs were annotated using the 
canonical pathways curated in the Human Molecular Signatures Database (MSigDB). These 
SNPs exhibited enrichments in pathways related to cholesterol metabolism, lipoprotein function, 
hyperlipidemia, as well as pathways associated with LDL, HDL, and triglycerides (Figure 8). 
These findings provide additional support for the genetic associations identified through mixWAS 
(Figure 6 and Figure 7). 
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Figure 8. Pathway annotations of mixWAS identified SNPs. The mixWAS identified SNPs 
were annotated using the MSigDB canonical pathways. The enrichment of a pathway is 
determined by the number of SNPs associated with the pathway. The pathways are ranked by 
their enrichment -log10(p-values) from top to bottom (blue bar). SNPs were also mapped to genes 
within each pathway and their presence in a gene is represented by yellow squares.  The 
proportion of overlapping genes in gene sets is shown as red bars.  
 
Methods 
eMERGE data  
Genotype data linked with EHR information from the eMERGE network Phase III. This dataset 
comprised a total of 83,717 genotyped patients across 11 participating sites35. For our 
investigation, we focused on eight adult sites, which included the Marshfield Clinic Research 
Foundation, Vanderbilt University Medical Center, Kaiser Permanente Washington/University of 
Washington, Mayo Clinic, Northwestern University, Geisinger, Mt. Sinai, and Mass General 
Brigham. SNPs were imputed using the Haplotype Reference Consortium 1.1 reference, aligned 
with genome build 37. This imputation process yielded a set of 39 million genetic variants36. 
Subsequently, we subjected the SNP genotypes to quality filtering and processing, following an 
established pipeline37. The criteria for inclusion required that both the genotype and sample call 
rates exceeded or equaled 99%, the imputation score exceeded 0.4, Hardy-Weinberg equilibrium 
p-value used was 0.00001, and the Minor Allele Frequency (MAF) of the SNPs was equal to or 
exceeded 0.05. To mitigate the potential impact of population structure on our analyses, we 
restricted our investigation to unrelated individuals of European ancestry. The ancestry was 
determined using principal components derived from the 1000 Genome Project.  In cases where 
individuals were identified as related, defined by a π-hat value of ≥ 0.25 identity-by-descent, one 
individual from each related pair was removed. The final dataset comprised 59,136 unrelated 
individuals, and a curated set of 6,106,952 high-quality SNPs for subsequent analyses. 
 
UK BioBank data  
The UK Biobank released comprehensive genetic and phenotypic data, encompassing 
approximately 500,000 individuals representing diverse regions across the United Kingdom38. 
Genotyping was conducted utilizing two related types of genotype arrays, namely the UK BiLEVE 
Axiom Array or the UK Biobank Axiom Array, organized into 106 batches and imputed using the 
merged UK10K and 1000 Genomes phase 3 reference panels39. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2024. ; https://doi.org/10.1101/2024.01.09.24301073doi: medRxiv preprint 

https://fuma.ctglab.nl/gene2func/119019#Canonical_PathwaysPanel
https://fuma.ctglab.nl/gene2func/119019#Canonical_PathwaysPanel
https://doi.org/10.1101/2024.01.09.24301073
http://creativecommons.org/licenses/by-nc-nd/4.0/


To ensure the quality and reliability of our sample, a series of quality control measures were 
implemented. First, individuals displaying a SNP missing rate exceeding 5% and exhibiting high 
levels of heterozygosity were excluded from the study. Second, among related individuals, one 
individual from each pair was systematically removed to prevent undue influence from familial 
genetic connections. The threshold for relatedness was set at the level of second-degree relatives, 
as indicated by an identity-by-descent π-hat value equal to or greater than 0.25. Third, only 
individuals with White British ancestry were retained in order to match the ancestry of the 
eMERGE data. Additionally, individuals with discrepancies between their self-reported and 
genetically-inferred sexes were omitted from the analysis. Finally, genetic variants characterized 
by imputation info scores lower than 0.3 and MAF less than 0.01 were excluded from 
consideration. 
 
mixWAS Algorithm 
mixWAS is designed to jointly test the association between a single SNP 𝑋	 and multiple mixed-
type phenotypes -𝑌#,   … ,  𝑌$1, across 𝑀	 sites, which cannot share individual level patient data 
across sites due to privacy concerns. We let 𝑖	index individuals, 𝑗	index phenotypes, and 𝑚	index 
sites. For the 𝑖%&  individual at the 𝑚%&  site we denote the SNP by 𝑋'! ∈  {0,  1,  2 } and the 𝑞	 
phenotypes by 𝒀𝒊𝒎  =  -𝑌'#! ,   …  ,  𝑌'$!1 ∈ 𝑅$. The outcomes of interest may be of differing data 
types such as binary, continuous, count, or time to event. 

Let 𝒁𝒊𝒎 ∈ 𝑅*denote a vector of an individual’s covariates, such as age, gender, or ancestry  
principal component (PCs). As a general framework for phenotype j,  

𝑌'+!|𝑋'!, 𝒁𝒊𝒎 ∼ 𝑓+(𝛽+𝑋'! + 𝒁𝒊𝒎𝑻 𝛄𝒋𝒎) 

(1) 

where β+ ∈ 𝑅 denotes the SNP effect, shared across all 𝑀 sites, and 𝜸𝒋𝒎 ∈ 𝑅*denotes the site-, 
phenotype-specific effect sizes for remaining covariates. These effects are allowed to be site-
specific to account for the site-level heterogeneity such as disease prevalence and confounding 
effects. Finally, 𝑓+  denotes the density corresponding to the data type for each phenotype of 
interest. For example, binary outcomes can be assumed to follow the logistic regression model  

log G
𝑃-𝑌'+! = 11

1 − 𝑃-𝑌'+! = 11
|𝑋'!, 𝒁𝒊𝒎J = 𝛼+! + 𝛽+𝑋'! + 𝒁𝒊𝒎𝑻 𝜸𝒋𝒎 

(2) 

while continuous outcomes can be assumed to follow the linear regression model 

𝐸-𝑌'+!M𝑋'!, 𝒁𝒊𝒎1 = 𝛼+! + 𝛽+𝑋'! + 𝒁𝒊𝒎𝑻 𝜸𝒋𝒎 

(3) 

Following the approach of Li et al14, 𝑞 phenotypes are combined using a composite likelihood 
function, which accounts for complex correlations between mixed-type phenotypes without 
modeling them directly40,41. The log composite likelihood function across all 𝑀  sites can be 
expressed as  
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𝐿(𝜷, 𝜸) = P P 𝐿+!-β+ , 𝜸𝒋𝒎1
$

+	/	#

0

!	/	#

= P P P log(
1!

'	/	#

$

+	/	#

0

!	/	#

𝑓+(𝑌'+!, 𝑋'!, 𝒁𝒊𝒎|	𝛽+ , 𝜸𝒋𝒎))	 

(4) 

In order to determine whether a given SNP has association with any of the phenotypes of interest, 
we consider testing 𝐻2: 𝜷 = -𝛽#, … , 𝛽$1 = 𝟎 against 𝐻#: 𝜷 ≠ 𝟎, using an omnibus score-type test, 
which is computationally efficient and lossless in a federated setting in which sites cannot share 
individual level data. The score function is defined by  

𝑆(𝟎, 𝜸&) = G
𝜕𝐿(0, 𝜸&)
𝜕𝛽#

, … ,
𝜕𝐿(0, 𝜸&)
𝜕𝛽$

J 

(5) 

where 𝜸&  are the maximum likelihood estimators of 𝜸  under 𝐻2  with 𝜷  set to 0. Non-SNP 
coefficients 𝛄𝒋𝒎 are both site- and phenotype-specific, and they can be estimated independently 
at each site by 𝜸&𝒋𝒎 = argmax𝜸𝒋𝒎𝐿+!-𝟎, 𝛄𝒋𝒎1. Because of the composite likelihood framework, the 
score function can be decomposed into a sum of site-specific score vectors as follows  

𝑆(𝟎, γ]) = P 𝑆!(𝟎, 𝜸&𝒎)
0

!/#

= PP∇4

$

+/#

0

!/#

𝐿+!(𝟎, 𝜸&𝒋𝒎) 

(6) 

Thus, each site only needs to compute and share its own score vector 𝑆!(𝟎, 𝜸&𝒎), and associated 
𝑞	 × 𝑞 covariance matrix 𝑉!, which contains only summary-level information. 𝑉! can be estimated 
locally by deriving the influence functions.  

mixWAS does not require all 𝑀 sites to have collected data on all 𝑞 phenotypes. Additionally, 
mixWAS does not require all individuals to have data available for all phenotypes collected at the 
site, provided any missing phenotype data at site level is missing completely at random (MCAR). 
Specifically, let 𝛿'+!  be an indicator denoting whether 𝑌'+!  is observed. Then the composite 
likelihood in equation (4) can be modified as  

𝐿(𝜷, 𝜸) = P P 𝐿+!-β+ , 𝜸𝒋𝒎1
$

+	/	#

0

!	/	#

= P P P 𝛿'+!	log(
1!

'	/	#

$

+	/	#

0

!	/	#

𝑓+(𝑌'+!, 𝑋'!, 𝒁𝒊𝒎|	𝛽+ , 𝜸𝒋𝒎))	 

(7) 

Note that when a site has no data on a particular phenotype collected, its contribution to the entry 
of overall score vector corresponding to that phenotype is just 0. We can obtain an overall test of 
𝐻2: 𝜷 = 𝟎 by 
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𝑇 = 𝑆5𝑉6#𝑆 = bP 𝑆!(0, 𝜸&𝒎)
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0
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0

!/#
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(8) 

Asymptotically, 𝑇 ∼ χ$7, which we can leverage to obtain a corresponding 𝑝-value, 𝑝89:;<. This test 
does well for dense alternatives when many of the 𝑞 phenotypes are non-null (𝛽+ ≠ 0 for many of 
the 𝑗	 ∈ {1, … , 𝑞}). However, when 𝑞 is large and most phenotypes are not significantly associated 
with the SNP (for example only one or two 𝛽+ are non-zero), this score test may not be sufficiently 
powerful as the signal could be diluted by the majority of null effects.  

Thus, we also consider a second test that is powerful under sparse alternatives, when the majority 
of the SNP effects are zero. Specifically, let  

𝒛 = 𝑉6#/7𝑆	 = 	bP𝑉!

!

'/#

c
6#/7

bP𝑆(𝟎, 𝜸&𝒎)
!

'/#

c 

(9) 

𝒛 = -𝑧#, … , 𝑧$1 ∼>>? 𝑁(0,1) and thus 𝑝-values 𝑝#, … , 𝑝$for the corresponding hypotheses 𝐻2: 𝛽+ =
0 can be obtained 𝑝+ = 2𝛷-−M𝑧+M1 where 𝛷(⋅) is the CDF of the standard Normal distribution. In 
order to combine the 𝑝-values, we use the aggregated Cauchy association test (ACAT)42. 

𝑡@A@5 =
1
𝑞
Ptan m𝜋 o

1
2
− 𝑝+pq

$

+/#

	

𝑝@A@5 =
1
2
−
1
𝜋
tan6#(𝑡@A@5) 

(10) 

Originally developed as a fast, computationally efficient 𝑝-value combination method for rare 
variant analyses, ACAT was shown particularly powerful in the presence of only a small number 
of causal variants in a variant set. Via simulations, we will show that such a test boosts power in 
the case of sparse alternatives. 

ACAT has also been shown to be useful as a method for combining p-values from tests powerful 
in differing scenarios to create an omnibus test42. It is particularly appealing as a way to combine 
our two component 𝑝-values, as it does not require one to estimate or account for potentially very 
complex correlation between component 𝑝-value. Thus, in order to create a test robust to both 
dense and sparse alternatives, we use ACAT to combine 𝑝89:;<, which is powerful against dense 
alternatives, and 𝑝@A@5, which boosts power against sparse alternatives, as shown in Equation 
(11).  

𝑡BCD =
1
2m
tan m𝜋 o

1
2
− 𝑝89:;<pq + tan m𝜋 o

1
2
− 𝑝@A@5pqq	
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𝑝BCD =
1
2
−
1
𝜋
tan6#(𝑡BCD) 

(11) 

Figure 1 outlines the full mixWAS algorithm, while Algorithm S1 in the supplementary material 
provides pseudo-code. mixWAS is lossless in the sense that there is no approximation error 
brought by the federated decomposition and we obtain identical results as the pooled analysis. It 
is also communication-efficient because only one round of communication is required across sites. 
Also, it is highly computationally efficient since the reduced model is shared across all genetic 
variants and the summary-level statistics have closed-form expressions.  
 
PheWAS 
PheWAS methods were utilized as a set of baselines against which to compare mixWAS. For 
continuous phenotypes, a linear regression was fit for each phenotype, while logistic regressions 
were fit for each binary phenotype. We first consider site specific estimates 𝛽r+! for phenotype 𝑗 
at site 𝑚, as sites can not pool their individual data, and combine estimates across sites using 
inverse-variance weighting to obtain -𝛽r#, … , 𝛽r$1 . In contrast to this PheWAS-Meta-analysis 
estimator, we also consider a PheWAS-Mega-analysis estimator where all individual data are 
pooled together prior to analysis, and then linear/logistic regression is applied to each phenotype 
depending on the data type. While this may be unrealistic in practice due to privacy restrictions 
that may prevent sites from sharing individual level information, it serves as a useful benchmark 
against which to compare, as there is no approximation error brought by the federated 
decomposition used in mixWAS’ distributed score tests, which obtain identical results as a pooled 
analysis.  

In these two methods, which we refer to as PheWAS-Meta and PheWAS-Mega, respectively, the 
overall 𝑝-value for the SNP is obtained by taking the minimum of the 𝑞 Bonferonni adjusted 𝑝-
values.  

Simulating MPA across multiple EHRs 

Various multi-phenotype association models were simulated to compare mixWAS with existing 
PheWAS baselines. As mixWAS is designed to integrate summary-level data across sites when 
individual-level data is unable to be pooled, we generate data at 5 sites. For comparison against 
mixWAS, we compute three PheWAS methods, as described in the PheWAS section above.  

We first outline a general process for generating data in simulations. We begin by drawing six 
covariates for each subject at each of 𝑀 = 5 sites, denoted by 𝒁𝒊𝒎 	= 4 principal components 
(PCs), age, and gender. Corresponding coefficients for these covariates, 𝜸𝒋𝒎 that are both site- 
and phenotype-specific are generated for each phenotype and site. Distributional choices for 
generating 𝒁𝒊𝒎	and 𝜸𝒋𝒎 are shown in Table 1.  

Variable 𝒁𝒊𝒎 Generation 𝛄𝒋𝒎 Generation 
Principal Components (4) 𝑁(0, 1) Uniform(−0.5, 0.5) 

Age (Centered) N(0, 157) Uniform(−0.05, 0.05) 
Gender Bernoulli(0.5) Uniform(−0.1, 0.1) 
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Table 1: Data generation mechanism for individual covariates ( 𝒁𝒊𝒎 ) and corresponding 
coefficients ( 𝜸𝒋𝒎 ). Note that 𝜸𝒋𝒎  coefficient vectors are generated for each phenotype 
independently.  

SNPs 𝑋 are drawn from Binomial(2,	MAF), where the minor allele frequency (MAF) is a parameter 
of the specific simulations. SNPs are centered to have mean 0 by subtracting 𝐸[𝑋] = 2 ×MAF so 
that the size of any SNP effect does not change the prevalence of any binary phenotype. 𝑞9 
continuous phenotypes are generated from the following linear model 

𝑌'+! = 𝛽+𝑋'! + 𝒁𝒊𝒎𝑻 𝜸𝒋𝒎 + 𝜖'+! 

(12) 
 

Random noise 𝝐𝒊𝒎 = -𝜖'#!,… , 𝜖'$$!1 ∼ 𝑁(𝟎, 𝜮𝒄)	is added to each subjects’ phenotype vector 𝒀𝒊𝒎 
to induce covariance 𝜮𝒄 across phenotypes. 𝑞G = 𝑞 − 𝑞9 binary phenotypes are generated by the 
following logistic regression model 

log G
𝑃-𝑌'+! = 11

1 − 𝑃-𝑌'+! = 11
	|𝑋'!, 𝒁𝒊𝒎	J = 𝛼 + 𝛽+𝑋'! + 𝒁𝒊𝒎𝑻 𝜸𝒋𝒎 

(13) 
 

where 𝛼 = log � Prevalence
#6Prevalence

� and the prevalence = 𝐸-𝑌'+!1, which is a simulation parameter, is set 
to be the same for each binary phenotype. Each subjects 𝑞G binary phenotypes are drawn using 
the rmvbin() in R’s bindata library43, which creates correlated multivariate binary random variables 
by thresholding a normal distribution. Marginal probabilities are obtained by applying the inverse 
logit function to equation (13), and covariance matrix 𝚺𝒃 is used to induce a correlation for the 
resulting binary phenotypes. Let 𝜮 = m

𝜮𝒄 𝟎
𝟎 𝜮𝒃

q  denote the overall covariance matrix for all 
phenotypes. In all simulations, 10% of phenotypes are set to be missing completely at random, 
and additionally we do not require that each site has all data available for all 𝑞 phenotypes.  

We consider 𝜷 = -𝛽#, … , 𝛽$1 of varying direction and sparsity. We define the sparsity of 𝜷 to be 
the number of components that are non-zero. All simulations set 𝑞	 = 	8 , and we consider 
sparsities ranging from 𝛽 = (𝛽, 𝛽, 0,0,0,0,0,0) (2 non-null phenotypes) to 𝜷 = (𝛽, 𝛽, 𝛽, 𝛽, 𝛽, 𝛽, 𝛽, 𝛽) 
(8 non-null phentypes). While we always set the magnitude M𝛽+M = 	𝛽 to be the same for each non-
null phenotype, we consider cases where all non-zero components are positive (e.g. 𝜷 =
(𝛽, 𝛽, 𝛽, 𝛽, 0,0,0,0)), all non-zero components are negative (e.g. 𝜷 = (−𝛽,−𝛽,−𝛽,−𝛽, 0,0,0,0)), 
and a case where the direction of the effects are opposite, with half non-zero components being 
positive and half being negative (e.g. 𝜷 = (𝛽,−𝛽, 𝛽, −𝛽, 0,0,0,0)). For each magnitude of effect, 𝛽, 
2000 simulated datasets were generated, and power for each method was calculated as the 
percentage of times a method identified significant multi-phenotype associations out of 2000 
repetitions.  
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To demonstrate the utility of mixWAS, we first consider a simulation setting in which 𝑞	= 8 
phenotypes are available at 𝑀 = 5 sites, with 𝑛! = 1000 subjects at each site. Of the 8 available 
phenotypes, 𝑞9 = 4 are continuous (𝒀𝟏, … , 𝒀𝟒) and 𝑞G = 4 are binary (𝒀𝟓, …𝒀𝟖). A common variant 
setting was chosen for binary phenotypes with MAF = 20% and the prevalence of each phenotype 
= 30%. Effect sizes |𝛽| considered ranged from [0.01, 0.35].  

For this setting, binary phenotypes are always considered to be positive, indicating a SNP 
increases the likelihood of each phenotype (disease). We consider cases where 2 (1 binary + 1 
continuous), 5 (3 binary + 2 continuous), and all 8 β+ are non-zero. While binary phenotypes are 
always positive, we consider cases where the continuous phenotypes either all positive (Figure 
2) or are in opposite directions (e.g. 1 negative, 1 negative/1 positive, and 2 negative/2 positive 
in the 3 levels of sparsity, respectively) [Figure 3]. 

We consider 3 types of residual correlation between phenotypes: positive, no correlation, and 
negative. Correlations between phenotypes are shown in Figure 9 When all effects are positive, 
residual correlation is added to both continuous and binary phenotypes. In the case of opposite 
direction continuous phenotypes, we only include residual correlation for continuous phenotypes. 
As this setting only considers positive binary phenotype, we wanted to understand the interaction 
between oppositive direction effects and different directions of correlations without power varying 
due to the direction of residual correlation of the positive binary effects, which can heavily 
influence power (Figure 2). Note that 𝜮𝒄, the covariance matrix for the continuous phenotypes is 
simply the upper block diagonal of the correlation matrix shown in Figure 10 scaled by 𝜎7 = 2.37. 

 

Figure 9: Correlation matrix for mixed data type simulation. (𝒀𝟏, … , 𝒀𝟒)  are continuous 
phenotypes while (𝒀𝟓, …𝒀𝟖) are binary phenotypes. To get the full covariance matrix for the 
continuous phenotypes, 𝚺𝒄 , the upper block diagonal is scaled by 𝜎7 = 2.37 . For binary 
phenotypes, the correlation matrix is supplied to R function rmvbin() in the bindata package.  

mixWAS was compared against the PheWAS-Mega/meta-analysis methods described in the 
PheWAS section, as well as an oracle score test, which is a score test using only de-correlated 
𝑧 −scores (Equation (9)) for non-null phenotypes. This test is considered an oracle test because 
in which phenotypes have non-null associations with the SNP is unknown in practice. As such, 
this reference gives a helpful upper bound on the power of score-based hypothesis tests under 
this setting. 
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Power curves from the simulation are shown in Figures 2 and 3. Most notably, mixWAS has 
higher power compared to standard PheWAS methods in all scenarios, especially in cases 
where only 2 of the 8 SNP effects are non-null, and when the SNP effects oppose the direction 
of residual correlation between phenotypes. 
 
Utilizing mixWAS to detect MPA using eMERGE and UK Biobank 
From the eMERGE study, patients from multiple adult electronic health records (EHRs), including 
Marshfield Clinic, Vanderbilt University, Kaiser Permanente/University of Washington, Mayo 
Clinic, Northwestern University, Geisinger, and Mass General Brigham, were included in the 
research. Binary disease statuses for individuals were determined based on specific ICD-9 codes, 
including unspecified essential hypertension (ICD-9 401.9), type 2 diabetes (ICD-9 250.00), 
hyperlipidemia (ICD-9 272.4), benign essential hypertension (ICD-9 401.1), atrial fibrillation (ICD-
9 427.31), congestive heart failure (ICD-9 428.0), and coronary atherosclerosis (ICD-9 414.00). 
Additionally, median laboratory measures, including LDL, HDL, serum total cholesterol, 
triglycerides, and BMI for each patient, were calculated and utilized as continuous outcomes. 

mixWAS was applied to each SNP to detect MPA among the mixed binary and continuous 
outcomes. This analysis included adjustments for age, sex, and the top 10 principal components 
to account for population stratification. Given the different ages of disease onset for each condition, 
distinct disease-associated ages were incorporated into the mixWAS model. The disease-
associated age was computed as the median age for each continuous laboratory measure. For 
binary diseases, the median age of the ICD-9 code assignments for a disease was employed as 
the age for cases, while for controls, the age was determined as the patients' age at their last 
EHR record. 

The MPA identified by eMERGE were independently validated using data from the UK Biobank 
(UKBB). Since the UKBB primarily utilizes ICD-10 codes for clinical diagnosis, a mapping process 
was carried out to convert the ICD-9 codes used in eMERGE data to their corresponding ICD-10 
codes. The converted ICD-10 codes were unspecified essential hypertension and benign 
essential hypertension (ICD-10 I10), type 2 diabetes (ICD-10 E119), hyperlipidemia (ICD-10 E784 
and ICD-10 E785), atrial fibrillation (ICD-10 I489), congestive heart failure (ICD-10 I509), and 
coronary atherosclerosis (ICD-10 I251). The continuous laboratory measures were extracted from 
the following fields, including LDL (field 30780), HDL (field 30760), total cholesterol (field 30690), 
triglycerides (field 30870), and BMI (field 12001). Notably, unspecified essential hypertension 
(ICD-9 401.9) and benign essential hypertension (ICD-9 401.1) from eMERGE were consolidated 
into a single condition, essential (primary) hypertension (ICD-10 I10), in the UKBB dataset. 

In the eMERGE discovery analysis, the significance threshold for SNPs’ p-value was set as 8.19 
x 10-9 (0.05/6,106,952), corresponding to the Bonferroni adjusted p-value threshold. Subsequently, 
the 4,534 significant SNPs identified were re-evaluated in the UKBB dataset using the mixWAS 
algorithm, with a significance threshold set at 0.05/4,534=1.103 x 10-5. Furthermore, these 4,534 
significant SNPs underwent PheWAS analysis in the UKBB to identify specific SNP-phenotype 
associations driving the MPAs. The Bonferroni-adjusted p-value threshold for this analysis was 
set at (0.05/4,534)/10 = 1.103 x 10^-6. In contrast, the standard PheWAS Bonferroni-corrected p-
value threshold is 7.90 x 10^-10, which accounts for analyzing all SNPs in the UKBB dataset. 

Functional annotation of the mixWAS-identified SNPs was carried out using the FUMA 
software44,45, and these SNPs were annotated using canonical pathways from the Human 
Molecular Signatures Database (MSigDB)46. 
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Discussion 
Recently, numerous initiatives have made EHR-linked genetic data available for genomics 
research. The wealth of extensive and well-characterized patients' phenotype data extracted from 
EHRs presents an unprecedented opportunity to investigate genetic variants associated with 
multiple diseases or traits, which can potentially shed light on shared underlying genetic 
architectures among diverse phenotypes. The availability of EHR-linked genetic data from various 
institutions, health systems, and population studies further enables us to exchange and integrate 
data from different sources, thereby enhancing the power and reproducibility of our research 
findings.   

However, despite these opportunities, significant data sharing constraints and methodological 
challenges have hindered the full utilization of multiple EHR-linked genetic datasets for studying 
MPA. To overcome these challenges, we developed the mixWAS method, which efficiently and 
losslessly integrates summary statistics from multiple data sources to effectively identify genetic 
variants associated with multiple binary or continuous phenotypes, enabling a more 
comprehensive exploration of the shared genetic basis underlying various phenotypic traits. 

We used simulation studies to demonstrate that mixWAS outperforms standard statistical 
approaches used in most PheWAS across a range of realistic settings that incorporate 
heterogeneity across sites, ranging direction, magnitude, and sparsity of phenotype effects, 
missing data, healthy volunteer biobanks, and common/rare genetic variants. By accounting for 
correlation between phenotypes in a manner that does not require individual level information, 
mixWAS gained the most power in settings where residual correlation existed between 
phenotypes, and SNP effects went against the correlation of these effects. Given that MPAs can 
often be difficult to detect, in large part due weak associations and multiple testing penalties in 
standard PheWAS methods, and given its improved power in most settings, mixWAS is a superior 
method for studying the shared genetic basis underlying multiple phenotypic traits in complex 
multi-EHR settings. 

Towards this end, we employed the mixWAS method to study MPA across blood lipid levels, BMI, 
and diseases of the circulatory system using seven EHR sites from the eMERGE project, and we 
validated our findings using data from the UKBB. Figure 3 illustrates heterogeneities in data 
characteristics across different eMERGE study sites. Notably, Vanderbilt and Mass General 
Brigham had the largest relative sample sizes compared to other sites, but both datasets had 
significant missing blood lipid measurements. The presence of differential missing data patterns 
is expected when integrating data from multiple real EHR sources, given the varying clinical 
protocols and patient populations among hospitals. Nevertheless, the mixWAS method can 
effectively account for the differential missing data across hospitals. 

Applying mixWAS separately to each eMERGE site or across all sites yielded significantly 
different numbers of significant genetic associations. Comparing results between individual sites 
revealed a strong correlation between sample size and the number of detected genetic 
associations. Notably, the locations of the significant associations remained consistent between 
different datasets, suggesting the detection of the same MPAs across different EHRs, with only 
variations in the number of associations. The integrated eMERGE analysis identified the highest 
number of significant associations compared to any individual site (Figure 4). Importantly, the 
integrated analysis identified additional genetic associations that are not present in any single-
site data, underscoring the benefits of this integrated approach. 
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The 4,534 mixWAS-identified MPA in eMERGE were further validated in the UKBB data. Using 
the p-value thresholds corresponding to the number of MPA, 4,428 MPA reached the significance 
threshold in UKBB (Figure 5). Given the distinct study populations and data generation processes 
between the two datasets (US and UK), we believe the 4,428 genetic variants represent robust 
MPAs for the studied diseases and traits.  A common challenge in interpreting MPAs lies in 
distinguishing SNPs that are associated with only one phenotype from those associated with 
multiple phenotypes. However, a joint test, such as mixWAS, can effectively detect both types of 
associations equivalently. To further investigate the specific trait-SNP associations driving the 
MPAs, we performed additional single phenotype and SNP associations for all MPA SNPs 
identified in eMERGE. MPA SNPs were found to be significantly associated with 0 to 8 traits, with 
2 to 4 traits being the most common, and the majority of MPA SNPs were associated with more 
than 2 phenotypes (Figure 6a). 

Among the traits, lipid levels (including LDL, HDL, Cholesterol, and Triglycerides) shared the 
largest number of associated genetic variants, followed by BMI (Figure 6b). Additionally, coronary 
artery disease and T2D showed common MPAs with protein lipid levels and BMI. For heart failure, 
no significant associations were detected; however, some of the genetic associations were just 
below the significance threshold. The evaluated genetic variants are specifically those that 
showed MPAs across diseases, and the lack of identified associations may be due to limited 
number of heart failure cases, or shared genetic effects between heart failure and other diseases, 
or it may indicate inadequate power to detect smaller associations, or phenotype heterogeneity, 
or a combination of multiple factors. We additionally performed a separate GWAS analysis on 
heart failure alone in eMERGE and no SNP associations were found to be significant. This 
supports our hypothesis that the data was underpowered for studying heart failure. However, 
further studies are needed to confirm these results, as this study represents the first identification 
of MPAs in these diseases and traits. 

Moreover, we observed improved power in detecting specific trait-SNP associations from the 
4,534 mixWAS-detected MPAs in UKBB. Compared to investigating all trait-SNP associations, or 
a PheWAS analysis, using mixWAS MPAs resulted in an 18.9% increase in the number of 
detected associations (Figure 7). This increased number of associations can provide additional 
insights into the shared underlying genetics among different diseases and traits. Functional 
analysis of the mixWAS-detected MPA confirmed that the MPA are enriched for pathways related 
to cholesterol metabolism, lipoprotein function, hyperlipidemia, as well as pathways associated 
with LDL, HDL, and triglycerides (Figure 8). Together, these findings support that the mixWAS 
has improved power to detect more MPA that are functionally relevant to the studied 
diseases/traits.  

In our evaluation of mixWAS, we tested it against a fixed number of phenotypes and found that it 
outperformed typical PheWAS statistical approaches. Importantly, this approach could be scaled 
to an arbitrarily large number of phenotypes, including different approaches taken to defining the 
phenome. mixWAS also extends its utility beyond genetic datasets and can be applied to any 
datasets that contain binary or continuous outcomes. Nevertheless, we also recognize several 
limitations of the study. First, while mixWAS can accommodate differential missing data patterns 
in each dataset, this relies on the assumption that the data is missing at random. Second, the 
presence of a substantial number of null phenotypes—those unrelated to genetic variants—can 
diminish the power of mixWAS. Lastly, mixWAS requires the sharing of more extensive summary-
level statistics compared to traditional meta-analysis methods, resulting in higher data 
communication costs. However, these costs remain orders of magnitude lower than the 
transmission of entire datasets. 
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Code availability 

The mixWAS algorithm and the code associated with this study have been deposited at: 

https://github.com/lbenz730/mixWAS 
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Supplementary Material 
 
Binary Phenotypes: Common and Rare Variant Settings  

In the additional simulation study, we also consider a method that is more common in pleiotropy 
analysis, ASSET47, which exhaustively searches subsets of the phenotypes for significant 
effects, and is able to account for correlation between the phenotypes introduced by sample 
overlap. 43. Since ASSET is only for pleiotropic analyses of binary phenotypes, we consider 
various simulation settings in which all 8 phenotypes (𝒀𝟏, … , 𝒀𝟖) are binary. As outlined above, 
𝑞 = 𝑞G = 8, 𝑛! = 1000 subjects at each of 𝑀 = 5 sites. We consider a common variant setting 
with MAF = 20% and prevalence = 30%, along with a rare variant setting with MAF = 5% and 
prevalence = 10%. Effect sizes |𝛽| considered ranged from [0.01, 0.60]. 𝜮 = 𝜮𝒃 is shown in 
Figure 3a. Only positive correlation is considered in this setting. 

Empirical power curves for this pair of binary phenotype simulations are shown in Figure S1. In 
the common variant/high prevalence setting, mixWAS outperforms all PheWAS methods, 
including ASSET, which is overly conservative in most settings, as it only accounts for correlation 
due to sample overlap, rather than correlation induced by the fact that outcomes themselves may 
be highly correlated across subjects. In the rare variant/low prevalence setting, PheWAS methods 
are highly impacted by the direction of non-null effects. When effects are all positive (i.e. SNP 
increases disease prevalence), PheWAS-Meta and mega outperform even the oracle score test.  

However, when all SNP effects are negative (SNP decreases disease prevalence) PheWAS-
Meta and mega do significantly worse than mixWAS, due to the fact that the direction of these 
effects is against the direction of the residual correlation (Figure S3a). Similar results can be 
seen when effects are in opposite directions. The sign of the effect likely impacts PheWAS 
methods in low prevalence settings due to the fact that logistic regression is biased in problems 
with heavy class imbalance48 
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a: Common Variant/High Prevalence Setting 

 

 
b: Rare Variant/Low Prevalence Setting 

 
Figure S1: Empirical power curves for binary phenotype simulations. In the common variant/high 
prevalence setting, mixWAS outperforms all PheWAS methods, including ASSET, which is overly 
conservative in most settings. In the rare variant/low prevalence setting, PheWAS methods are 
highly impacted by the effect direction(s), doing better than mixWAS in the case of all positive 
effects but performing significantly worse when all effects are negative, or effects are in opposite 
directions. 
 
Healthy Controls  
Genetic biobanks, like the UK Biobank, often only contain controls with none of the 
diseases/phenotypes of interest, and cases for each specific subject. A subject may be a case for 
multiple phenotypes, but the absence of a subject being a case for a particular phenotype does 
not make them a control for that phenotype–their disease status is simply unknown, and no 
subject can ever be both a case one phenotype and a control for a different phenotype.  

To mimic the structure of these real-life genetic databases, we designed a simulation with healthy 
controls. 8 binary phenotypes were generated in the same manner as the common variant, high 
prevalence binary phenotypes above, except that controls were designated as subjects for whom 
𝑌'+!= 0 for 𝑗	 ∈ {1, … , 8}. Subjects who were a case for at least one phenotype had their control 
status for other phenotypes replaced by an NA indicating disease status unknown. A stronger 
correlation structure 𝜮 = 𝜮𝒃	was utilized in this simulation, as shown in Figure S3b. Note that due 
to the perfect split between cases and controls, an even stronger correlation is induced between 
phenotypes than what is shown in Figure 3b. Additionally, since subjects who were cases for 
some subset of phenotypes could be controls for other phenotypes in previous simulations, but 
under the healthy control setting cannot be controls for other phenotypes, the effective number of 
subjects is drastically reduced compared to other simulation settings.  
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Figure S2: Empirical power curves comparing various cross-phenotype association tests for 
simulated binary phenotypes using only healthy controls to compare against diseased cases. 
mixWAS significantly outperforms ASSET in every setting, as the latter method does not account 
for correlation between phenotypes except for correlation induced by sample overlap. PheWAS-
Mega/meta obtain the highest power when no-sparsity is present, but power is again affected by 
the direction of effects. 

Empirical power curves are shown in Figure S2. mixWAS significantly outperforms ASSET in 
every setting, as the latter method does not account for correlation between phenotypes except 
for correlation induced by sample overlap. PheWAS-Mega/meta obtain the highest power when 
no sparsity is present, but power is again affected by the direction of effects, with power being 
worst under mixed-direction phenotypes. This result is likely explained once again by the smaller 
effective sample size introduced by limiting our previous simulated sample to include only health 
controls as well as the bias of logistic regression in class imbalanced problems48.  
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           a: Common and Rare Variant Settings                      b: Health Controls Setting 

 
Figure S3: Correlation matrices for binary phenotype data type, supplied to R function rmvbin() 
in the bindata package43. 
 
 
 
 

 
Algorithm S1: Outline of mixWAS algorithm 
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