Abstract
Polygenic scores (PGS) are promising in stratifying individuals based on the genetic susceptibility to complex diseases or traits. However, the accuracy of PGS models, typically trained in European- or East Asian-ancestry populations, tend to perform poorly in other ethnic minority populations, and their accuracies have not been evaluated for Native Hawaiians. Using body mass index, height, and type-2 diabetes as examples of highly polygenic traits, we evaluated the prediction accuracies of PGS models in a large Native Hawaiian sample from the Multiethnic Cohort with up to 5,300 individuals. We evaluated both publicly available PGS models or genome-wide PGS models trained in this study using the largest available GWAS. We found evidence of lowered prediction accuracies for the PGS models in some cases, particularly for height. We also found that using the Native Hawaiian samples as an optimization cohort during training did not consistently improve PGS performance. Moreover, even the best performing PGS models among Native Hawaiians would have lowered prediction accuracy among the subset of individuals most enriched with Polynesian ancestry. Our findings indicate that factors such as admixture histories, sample size and diversity in GWAS can influence PGS performance for complex traits among Native Hawaiian samples. This study provides an initial survey of PGS performance among Native Hawaiians and exposes the current gaps and challenges associated with improving polygenic prediction models for underrepresented minority populations.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study is supported by grants from the National Human Genome Research Institute (R01HG011646 to C.W.K.C.) and the Taiwan-USC Postdoctoral Fellowship from Taiwan Education Ministry. Computation for this work was supported by the University of Southern California's Center for High-Performance Computing (https://hpcc.usc.edu).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Genetic data utilized in this study will be available on dbGAP (accession number: phs002183.v1.p1). GWAS summary statistics were downloaded from literature. For the downloaded PGS models were from the PGS catalog. We built a package to incorporate the pipeline for training, optimizing, and validating the PGS models. The package is publicly available on GitHub: https://github.com/imyingchulo/gprs.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Genotype data is available on dbGaP with accession numbers phs 000220.v2.p2 and phs002183.v1.p1