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Abstract 25 
Polygenic scores (PGS) are promising in stratifying individuals based on the genetic susceptibility 26 
to complex diseases or traits. However, the accuracy of PGS models, typically trained in European- 27 
or East Asian-ancestry populations, tend to perform poorly in other ethnic minority populations, 28 
and their accuracies have not been evaluated for Native Hawaiians. Using body mass index, height, 29 
and type-2 diabetes as examples of highly polygenic traits, we evaluated the prediction accuracies 30 
of PGS models in a large Native Hawaiian sample from the Multiethnic Cohort with up to 5,300 31 
individuals. We evaluated both publicly available PGS models or genome-wide PGS models 32 
trained in this study using the largest available GWAS. We found evidence of lowered prediction 33 
accuracies for the PGS models in some cases, particularly for height. We also found that using the 34 
Native Hawaiian samples as an optimization cohort during training did not consistently improve 35 
PGS performance. Moreover, even the best performing PGS models among Native Hawaiians 36 
would have lowered prediction accuracy among the subset of individuals most enriched with 37 
Polynesian ancestry. Our findings indicate that factors such as admixture histories, sample size 38 
and diversity in GWAS can influence PGS performance for complex traits among Native Hawaiian 39 
samples. This study provides an initial survey of PGS performance among Native Hawaiians and 40 
exposes the current gaps and challenges associated with improving polygenic prediction models 41 
for underrepresented minority populations. 42 
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Introduction 47 
Genome-wide association studies (GWAS) have identified thousands of genetic variants 48 

associated with a plethora of human complex traits and diseases [1,2]. The success of GWAS has 49 
enabled a burgeoning field of post-GWAS analysis, including the computation of polygenic scores 50 
(PGS) for predicting the genetic risk for an individual based on their genotypes and available 51 
GWAS summary statistics to common diseases or complex traits [3,4]. On the basis of the GWAS 52 
summary statistics, the PGS is calculated as the sum of the trait-associated alleles an individual 53 
carries, weighted by the estimated effect sizes of the alleles. Recent developments have focused 54 
on extending PGS modeling to include variants and their appropriate weights genome-wide. Such 55 
genome-wide PGS tend to be more efficacious in predicting outcome than a simple approach of 56 
selecting only genome-wide significantly associated variants [5–7]. 57 

As the sample sizes of GWAS increased, the resulting PGS has become more effective in risk 58 
predictions, early disease detection, and the development of precision medicine [8,9]. However, 59 
available GWAS data are heavily biased towards European-ancestry individuals [10,11], posing a 60 
challenge for PGS due to its poor transferability between populations. In particular, PGS trained 61 
with European populations exhibit reduced prediction accuracy when applied to non-European 62 
populations [12,13]. This poor transferability has been demonstrated for several ethnic minority 63 
populations but has not been evaluated for Native Hawaiians, who make up the largest Pacific 64 
Islander population in the U.S. [14]. 65 

Native Hawaiians are known to have a higher risk of obesity, diabetes, and cardiovascular 66 
disease, among others both within Hawai‘i and nationally [15–19]. They also have the highest 67 
mortality rate in several types of cancer compared to other ethnic groups [20–22]. In addition, as  68 
consequence of centuries of colonization and globalization, Native Hawaiians are largely 69 
admixed[23–25], representing ancestry components derived from Polynesian ancestors (~40%) 70 
and recent (within the last 300 years or so) admixtures from European (~30%) and East Asian 71 
(~29%) immigrants, among others. These ancestries can also be correlated with elevated risks of 72 
certain metabolic diseases [15–17,19]. Despite these elevated disease risks, the Native Hawaiian 73 
population is largely understudied and underserved [23,25]. We generally lack the genomic 74 
resources and knowledge for this population to reap the benefits of genetic research and genomic 75 
medicine [23,26].  76 

Predictions based on PGS is one area that is under-investigated for Native Hawaiians and can 77 
be potentially improved. To date, no systematic evaluation of PGS, particularly for metabolic traits 78 
and diseases such as body mass index (BMI) and type 2 diabetes (T2D), have been conducted for 79 
the Native Hawaiians. Given the underrepresentation of Polynesian ancestries in genomic studies 80 
and references, poor transferability of PGS models trained in the largest GWAS dataset is expected 81 
as is often observed with other populations and ethnic minorities. On the other hand, it is unclear 82 
whether the admixture alleviates some of the transferability issues of PGS at the population level. 83 
Because admixture levels vary across individuals within a population, even if admixture alleviates 84 
some of the transferability issues, it could create disparity within Native Hawaiian communities 85 
depending on individual’s genomic similarity to the underrepresented Polynesian ancestries. It is 86 
thus crucial to evaluate the transferability of PGS in this population and assess any disparities 87 
specific to Native Hawaiians in order to begin bridging this gap.  88 

We conducted the present study using data from the Multiethnic Cohort (MEC) [27]. We 89 
leveraged the data of approximately 5,300 Native Hawaiian (MEC-NH), as well as populations as 90 
proxies for East Asian- and European ancestries (approximately 19,600 Japanese Americans, 91 
MEC-J; approximately 8,500 White Americans, MEC-W), who were genotyped on the Multi-92 
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Ethnic Global Array (MEGA) or Global Diversity Array (GDA) arrays to evaluate the prediction 93 
accuracy of PGS for BMI, height, and T2D. We trained PGS models using summary statistics from 94 
the largest available consortium GWAS from European (EUR), East Asian (EAS), or multi-ethnic 95 
populations for BMI, height, and T2D. We focused on these traits as they are the most available 96 
and because they are closely linked to obesity, diabetes, and cardiovascular disease – diseases that 97 
show elevated risks within the Native Hawaiian population [18,28,29]. Furthermore, T2D was 98 
identified as one of the diseases that the Native Hawaiian communities expressed the most 99 
concerns [17,30]. Additionally, we assessed the efficacies of published PGS models from the PGS 100 
catalog [31] in MEC-NH. In each case, we also investigated the model efficacy in subsets of Native 101 
Hawaiians with higher estimated Polynesian ancestry. 102 

We stress that we utilized this study design as a way to examine health disparities within the 103 
Native Hawaiian population, and as a way to evaluate how these models may transfer to other 104 
Polynesian-ancestry populations. We used empirical (and potentially noisy) estimates of genetic 105 
ancestries as a means to assess the impact on the accuracy of currently available PGS models due 106 
to admixture over the last 10-12 generations, which is a product of the colonization of the Hawaiian 107 
archipelago by Western countries. Interpretations of these estimates beyond the research context 108 
are socially complex, and thus should not supplant current practices based on genealogical records 109 
and self-reports. These estimates also do not imply any hierarchies or socially meaningful 110 
subdivisions in the Native Hawaiian communities. 111 

 112 
Results 113 
 114 
Overview of the study design 115 
 Focusing on complex traits and diseases (i.e. BMI, height, and T2D) for which large-scale 116 
GWAS summary statistics are publicly available, we took two different approaches to construct 117 
PGS models for evaluation (Fig. 1). We collected from literature the largest East Asian-ancestry 118 
(EAS), European-ancestry (EUR), and multi-ancestry (META) meta-analysis GWAS summary 119 
statistics for each trait (Table S1) to train PGS models. Based on the summary statistics for a 120 
particular trait, we used independent MEC subcohorts for as reference for linkage disequilibrium 121 
(LD) (N = 500) and for PGS optimization (N = 3000), and then validated the PGS model in an 122 
additional held-out sample (N = 1000) (Methods). We trained and optimized PGS models in either 123 
EUR-, EAS- or multi-ancestry cohorts, and tested the transferability of the best performing 124 
genomic PGS models in Native Hawaiians (Design I in Fig. 1).  125 
 Secondly, we explored the potential of using Native Hawaiians as the optimization cohort to 126 
improve the accuracies of PGS models within MEC-NH (Design II in Fig. 1). Because the Native 127 
Hawaiian population, or even the larger Polynesian-ancestry Pacific Islander populations, are 128 
generally much smaller in sample sizes compared to the available consortium GWAS from 129 
continental populations, it is generally infeasible to amass the sample sizes necessary for a well-130 
powered GWAS that will be informative for PGS construction. We thus investigated whether the 131 
MEC-NH could be used for identifying the optimal PGS model to improve upon on the accuracy 132 
(hence alleviate the transferability issues) of PGS, even though the GWAS summary statistics were 133 
still derived from EAS, EUR, or multi-ancestry meta-analysis.  134 
 135 
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 136 
Fig 1. The overall study design of PGS evaluation in Native Hawaiians. The GWAS summary statistics were 137 
downloaded from large consortiums and biobanks (BBJ, UKB+GIANT, BBJ+TWB, and META). Each population-138 
specific GWAS (EAS, EUR) were used to train PGS models with the matching MEC cohort as the LD reference and 139 
optimization cohort (MEC-J for EAS, MEC-W for EUR). Multi-ancestry meta-analysis GWAS (META) were used 140 
to train PGS for both EAS and EUR populations. In Design I, EAS- or EUR-optimized PGS were validated in held-141 
out MEC-J, MEC-W and MEC-NH samples. Comparisons of PGS prediction accuracy between MEC-NH and MEC-142 
J or MEC-W provide the metric for transferability. In Design II, PGS models based on EAS or EUR GWAS were 143 
using MEC-NH, and the performance in held-out MEC-NH were then compared to the corresponding metric in Design 144 
I to assess potential improvement of prediction by PGS for MEC-NH. See Table S1 for detailed descriptions of the 145 
GWAS datasets used for this study. 146 
 147 
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Reduced prediction accuracy when applying EAS- or EUR-trained PGS to Native Hawaiians 148 
in some scenarios 149 

We first assessed the transferability of PGS to the Native Hawaiian population (Design I in 150 
Fig. 1). In this case, we identified GWAS summary statistics to build and optimize the PGS model 151 
using population-matched cohorts from the MEC, with the Japanese and Whites as representatives 152 
of the East Asian and European-ancestry cohorts, respectively (i.e. EAS GWAS were optimized 153 
using MEC-J; EUR GWAS were optimized using MEC-W; Multi-ancestry GWAS were optimized 154 
using either MEC-J or MEC-W separately). We then evaluated the performance of the PGS in 155 
held-out MEC-J, MEC-W, and MEC-NH individuals by R2. Poor transferability is indicated if 156 
there is a noticeable drop-off in prediction accuracy when a PGS model optimized in one 157 
population (e.g. EAS GWAS optimized in MEC-J) is tested in another population (e.g. MEC-W 158 
or MEC-NH validation cohort). 159 

As expected, PGS models optimized in MEC-J or MEC-W showed the highest prediction 160 
accuracy in validation cohorts from the same populations (Fig. 2). For instance, for BMI based on 161 
GWAS summary statistics from BBJ, the best PGS model optimized in MEC-J achieved the 162 
highest partial R2 in held-out MEC-J samples among the validation cohorts tested (partial R2 = 163 
0.059), while the best PGS model based on GWAS summary statistics from GIANT+UKB and 164 
optimized in MEC-W achieved the highest partial R2 in held-out MEC-W (partial R2 = 0.088). 165 
Moreover, consistent with the expectation of poor transferability, PGS trained in EAS tend to have 166 
reduced prediction accuracy in the other continental population. For instance, for BMI, EAS-167 
trained PGS model for BMI had reduced partial R2 in MEC-W (0.059 vs. 0.022; one-sided p = 168 
0.041 by bootstrapping), and EUR-trained PGS model for BMI performed more poorly in MEC-J 169 
(0.088 vs. 0.043; one-sided p = 0.045). PGS models trained from multi-ancestry meta-analysis 170 
GWAS sometimes reduced the gap in prediction accuracy between MEC-J and MEC-W, though 171 
they do not necessarily have higher population-specific prediction accuracies depending on the 172 
traits examined (Fig. 2). 173 

When validating EAS- or EUR-trained PGS in the Native Hawaiian cohort, transferability 174 
was not consistently poor, depending on the trait or the GWAS summary statistics used for training 175 
(Fig.2). For height, there were noticeable reduction in prediction accuracy (e.g. for EAS-trained 176 
PGS based on the BBJ GWAS, partial R2 = 0.253 in MEC-J to 0.048 for MEC-NH; one-sided 177 
p<0.001). In contrast, EAS- or EUR-trained PGS for BMI showed little drop-off when evaluated 178 
in MEC-NH (Fig.2). T2D PGS models showed similar pattern as BMI, though the overall 179 
prediction accuracies are relatively low (Fig.2) 180 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.25.23300499doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.25.23300499
http://creativecommons.org/licenses/by-nc-nd/4.0/


 181 
Fig 2. The transferability of EAS- and EUR-trained PGS for BMI, height and T2D. The genomic PGS model 182 
with the highest prediction accuracy in optimization cohorts was validated in held-out MEC-J, MEC-W, and MEC-183 
NH cohorts. This figure summarizes the results of analysis in Design I, Fig.1, and details of the model parameter for 184 
the best performing PGS model can be found in Table 1. Best model based on the C+T or LDpred2 approach are 185 
represented by blank or hashed bars, respectively. The standard error for the R2 were calculated using 1,000 sets of 186 
bootstrap samples. For BMI and height, random 1,000 individuals from each of MEC-J, MEC-W, and MEC-NH were 187 
used for validation. For T2D, all cases and controls that were not used in training were used for validation: 3,315 cases 188 
and 6,700 controls for MEC-J, 496 cases and 4,063 controls for MEC-W, 392 cases and 549 controls for MEC-NH. 189 
 190 
PGS optimized in Native Hawaiians did not necessarily improve the PGS transferability 191 

In absence of a large-scale powerful GWAS in Polynesian-ancestry populations, another 192 
possibility to improve the PGS prediction accuracies for Native Hawaiians may be to use the MEC-193 
NH cohort for optimization, as this may lessen the differences in linkage disequilibrium between 194 
the training and validating cohorts and thereby reduce the transferability gap of PGS. Therefore, 195 
we employed MEC-NH as an additional optimized cohort, following the same pipeline (Design II, 196 
Fig.1) to compare with the PGS models optimized using MEC-J and MEC-W. When validated in 197 
held-out MEC-NH samples, we observed that generally speaking, PGS models optimized in MEC-198 
NH did not necessarily have better prediction accuracy in the validation cohort (Fig.3). NH-199 
optimized PGS models have at best similar prediction accuracies, if not worse (Fig. 3). Our results 200 
thus suggest that optimization in MEC-NH did not necessarily lead to improved PGS accuracy 201 
compared to using the optimization cohort with consistent ancestry as the cohort generated the 202 
GWAS summary statistics. 203 
 204 
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 205 
Fig 3. The impact of MEC-NH as optimization cohort on PGS prediction accuracies in held-out MEC-NH for 206 
BMI, height, and T2D. For each combination of GWAS-trait PGS models that was previously optimized in MEC-J 207 
or MEC-W in Fig.2, the same data was then optimized using MEC-NH samples here (Design II, Fig.1). Previously 208 
optimized PGS models and the MEC-NH-optimized models were both validated in the held-out MEC-NH cohort to 209 
evaluate if optimization in MEC-NH would improve the prediction accuracy in Native Hawaiians. Details of the model 210 
parameter for the best performing PGS model can be found in Table S2. Best model based on the C+T or LDpred2 211 
approach are represented by blank or hashed bars, respectively. The standard error for the R2 were calculated using 212 
1,000 sets of bootstrap samples. For BMI and height, random 1,000 MEC-NH individuals were used for validation. 213 
For T2D, 392 cases and 549 controls from MEC-NH were used for validation. 214 
 215 
Prediction accuracy of publicly available PGS models for Native Hawaiians 216 

We constructed the PGS evaluated here based on limited number of, albeit some of the largest 217 
and most recent, GWAS meta-analysis datasets for BMI, height, and T2D (Table S1). However, 218 
there are a number of published PGS models for these traits in the PGS catalog (Table S2, URL 219 
https://www.pgscatalog.org/), some of which may have used different GWAS datasets or different 220 
methodologies for constructing PGS. We thus validated all of the BMI (N = 11), height (N = 4), 221 
and T2D (N = 10) PGS models available as of mid-2022 in MEC-NH, and compared them with 222 
our top-performing PGS. 223 
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We found that the PGS developed in this study aligns closely with the best-performing public 224 
PGS models for BMI and height in terms of prediction accuracy (Fig. 4). Moreover, in the case of 225 
T2D, our PGS models developed based on the GWAS summary statistics from the DIAMANTE 226 
European- or multi-ancestry meta-analysis [32] showed a higher level of predictive accuracy than 227 
other PGS models found in the PGS catalog (Fig.4). 228 

 229 
 230 

 231 

 232 
Fig 4. A Comparison of PGS between the optimal PGS from this study and PGS from the PGS-catalog. PGS 233 
models available on the PGS catalog (URL https://www.pgscatalog.org/) as of May 18, 2022 were downloaded for 234 
BMI, height, and T2D, and validated in the same MEC-NH individuals here. Blue bars represent the PGS constructed 235 
in this study with the highest prediction accuracy in MEC-NH. Clear and hash bars indicate the PGS was derived from 236 
C+T or LDPred2 approaches. Gray bars depict PGS from the PGS catalog. For BMI and height, random 1,000 MEC-237 
NH individuals were used for validation. For T2D, 392 cases and 549 controls from MEC-NH were used for validation. 238 
 239 
Reduced PGS prediction accuracy in the Native Hawaiians most enriched with Polynesian 240 
ancestries 241 
 The relatively comparable prediction accuracy of EAS- or EUR-trained PGS models or 242 
publicly available PGS models in MEC-NH could be in part driven by  admixture. However, 243 
Polynesian ancestries exist on a continuum in the population. Because Polynesian ancestries are 244 
likely the component of ancestries least similar to the ancestries of individuals participating in the 245 
GWAS datasets, there may be disparity in PGS prediction accuracy among individuals with 246 
different proportions of Polynesian ancestries [33]. Thus, we explored the accuracy of PGS in 247 
subsets of 1000 Native Hawaiians with highest Polynesian ancestries (PNS; minimum estimated 248 
proportion of ancestry = 65%), and compared to the 1000 randomly selection individuals. For 249 
some PGS models, particularly the best publicly available PGS models for BMI, there was 250 
substantially reduced prediction accuracy within the PNS subsets (Fig.5). For instance, the partial 251 
R2 for model PGS00910 was 0.088 in randomly selection MEC-NH, but 0.040 when applied in 252 
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PNS (one-sided P =0.04). In contrast, the PGS model in this study using the MEC-NH for 253 
optimization showed relatively little reduction in performance (Fig. 6). These findings suggest that 254 
while optimizing PGS in MEC-NH may not necessarily lead to improved transferability across 255 
Native Hawaiians in general, it could yield enhanced PGS accuracy among Native Hawaiians 256 
enriched with Polynesian ancestries, and thus may be more applicable to other Polynesian-ancestry 257 
populations across the Pacific. However, because most of the MEC-NH data were used for 258 
optimizing the PGS model, we have fewer individuals enriched with Polynesian ancestry to use as 259 
validation, resulting in larger error bars and less stable estimates of the prediction accuracy of the 260 
PGS models, and preventing us from evaluating PGS models for T2D as we ended with insufficient 261 
number of cases and controls. 262 
 263 
 264 

 265 
Fig 5. Prediction accuracies of models from PGS catalog in the random Native Hawaiian and Native Hawaiian 266 
with highest Polynesian ancestry validation sets. Each PGS model from PGS catalog was assessed in validation 267 
datasets from MEC-NH. For BMI and height, the validation cohort consisted of randomly selected 1000 MEC-NH or 268 
the 1000 individuals with the highest estimated Polynesian ancestry (minimum estimated Polynesian ancestry = 65%) 269 
among the entire MEC-NH cohort. This was not restricted to the 1,000 individuals reserved for validation in Figures 270 
2-4 as none of the MEC-NH individuals were used in construction of the publicly available PGS models. For T2D, 271 
because only 768 individuals (346 cases, 422 controls) with > 65% estimated Polynesian ancestry were available, we 272 
compared to 768 randomly selected MEC-NH individuals (318 cases, 450 controls). 273 
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 274 
 275 
Fig 6. Prediction accuracies of models from this study in the random Native Hawaiian and Native Hawaiian 276 
with highest Polynesian ancestry validation sets. The PGS models were all trained from EAS-, EUR- or multi-277 
ancestry GWAS, but using the MEC-NH for optimization. The resulting models were then validated in 200 randomly 278 
selected MEC-NH individuals and the same number of individuals with highest estimated Polynesian ancestries 279 
(minimum estimated Polynesian ancestry = 65%). We did not perform the analysis for T2D due to too few case / 280 
control samples, particularly among those with high Polynesian ancestries.  281 
 282 
Discussion 283 
 In this study we conducted a systematic assessment of the prediction accuracies and 284 
transferability of PGS models for Native Hawaiians. We assessed either PGS models constructed 285 
in this study or models that are publicly available from the PGS catalog. We focused on BMI, 286 
height, and T2D, as these are traits or diseases that showed different distributions between Native 287 
Hawaiians and other continental populations, and that Polynesian ancestries may be correlated 288 
with disease risk [15]. While we observed that EAS-trained PGS models have reduced prediction 289 
accuracy in MEC-W (the MEC cohort representing EUR ancestries) and vice versa, our results 290 
revealed that these PGS models at times showed comparable prediction accuracies in the Native 291 
Hawaiian cohort, especially for BMI and T2D. Empowered by the Native Hawaiian cohort in the 292 
Multiethnic Cohort Study (N ~ 5,300 with genome-wide genotyping array data), we were also able 293 
to evaluate whether using the MEC-NH individuals for optimizing the PGS model could improve 294 
PGS prediction accuracies for this population, even though our findings suggested limited 295 
improvements. Furthermore, because the Native Hawaiian population displays a continuum of 296 
genetic ancestry due to its colonial history, with Polynesian ancestries being the majority ancestry, 297 
we also evaluated PGS prediction accuracies as function of this ancestry. For publicly available 298 
PGS models for BMI and T2D, we did observe a reduction in prediction accuracy when applied to 299 
the Native Hawaiians most enriched with Polynesian ancestries. Our results suggest that recent 300 
admixture with European or East Asian ancestries are mediating the PGS performance, and these 301 
PGS models in general may be even less applicable to the Polynesian-ancestry populations across 302 
the Pacifics at large.  303 

Across the traits, populations, and GWAS datasets that we examined here for training PGS 304 
models for Native Hawaiians, irrespective of the degree of reduction in prediction accuracy, we 305 
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found that training with European-based GWA S generally produced better performing PGS 306 
models. For instance, the prediction accuracy by partial R2 of height PGS model from the 307 
UKB+GIANT dataset (N = ∼700,000), optimized in MEC-W, was 0.198 in validation MEC-NH, 308 
compared to 0.074 for PGS model derived from BBJ+TWB GWAS data (N = 102,900) with 309 
optimization in MEC-J (one-sided P < 0.001; Fig.2). This is thus reflective of the bias in GWAS, 310 
where ancestry-specific GWAS for European-ancestry populations are still much larger, and thus 311 
more powered and informative for PGS, than East Asian-ancestry populations. Another hint of this 312 
bias can also be observed when PGS was constructed from multi-ancestry meta-analysis data. In 313 
this case, the same GWAS dataset was optimized in MEC-W or MEC-J separately, but the 314 
resulting PGS still had higher prediction accuracy in held-out MEC-W (partial R2 = 0.286) than 315 
MEC-J (0.199; one-sided P = 0.023), respectively. This is potentially due to the European-ancestry 316 
populations still representing the majority of the dataset in the multi-ancestry meta-analysis 317 
(~628,000 European-ancestry individuals vs. ~ 179,000 East Asian-ancestry individuals in Sakaue 318 
S., et al. [34]). Therefore, in addition to increasing sample sizes of future GWAS, increasing 319 
representation and diversity of these GWAS will also help improve the PGS accuracy, particularly 320 
for a population such as the Native Hawaiians (or African Americans and Latinos) who are not a 321 
major constituent of multi-ancestry GWAS yet. This may be particularly important since using the 322 
diverse population for optimization, without fundamentally changing the representation of the 323 
GWAS data, did not appear to make meaningful improvements (Fig.3). 324 
 While we generally advocate for greater inclusion of diverse populations in future GWAS, 325 
which both increase the sample size and the diversity of the GWAS, it could also be difficult to 326 
predict the impact on prediction accuracy of the PGS and may be dependent on the trait architecture. 327 
For instance, the same multi-ancestry meta-analysis cohort optimized in MEC-W individuals 328 
showed an improvement in prediction accuracy for BMI (partial R2 = 0.104, compared to partial 329 
R2 = 0.088 in UKB+GIANT only; P < 0.001 by paired bootstrapping; Fig.2), but a reduction for 330 
height (partial R2 = 0.286 in multi-ancestry meta-analysis, compared to R2 = 0.328 in 331 
UKB+GIANT; P < 0.001; Fig.2). For Native Hawaiians, switching from a smaller European-only 332 
GWAS to a marginally larger multi-ancestry GWAS did not improve the prediction accuracies for 333 
either trait, though the performance was comparable (partial R2 = 0.081 vs. 0.078 for BMI, 0.198 334 
vs. 0.176 for height; Fig. 2). It is therefore important to assess the prediction accuracy empirically, 335 
particularly for the diverse ethnic minority populations such as the Native Hawaiians. 336 
 In addition to sample size and diversity of the GWAS dataset for training, the size of the 337 
optimization and validation samples may also play a role in determining the transferability of the 338 
resulting PGS model. In particular, we had compared the PGS models constructed here with those 339 
publicly available on the PGS catalog (Fig. 4). For some traits, our models may have used larger 340 
GWAS but achieved only comparable, if not lower, prediction accuracies compared to the 341 
published PGS models. For instance, in the case of height PGS, PGS001929 [35] showed 342 
significantly better performance than our best model (partial R2 = 0.236 vs. 0.198; P = 0.02 ; 343 
Fig.4). PGS001929 utilizes only the UKB GWAS (N ~500,000) and employs the same LDpred2 344 
for PGS construction. The improved performance in PGS001929 may be attributed to a larger 345 
optimized dataset and validation sample sizes (N = 349,991 and 43,631, respectively). Our 346 
observations here then suggest that the most effective study design to construct PGS for 347 
underrepresented admixed populations may be using the largest and most diverse GWAS along 348 
with a large sample for optimization. This is yet another challenge for underrepresented minority 349 
populations such as the Native Hawaiians when sample sizes are generally small. 350 
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 In summary, our study informs on PGS performance and transferability in the Native 351 
Hawaiians and individuals with Polynesian ancestry. We found that continental-level admixture, 352 
over the last 300 years or so, may have mediated the PGS performance for these complex traits in 353 
Native Hawaiians. We again stress that our use to quantify proportion of ancestries was solely for 354 
the purpose of research use, as a means to evaluate potential disparity in the way PGS can be 355 
deployed within the Native Hawaiian population. These estimates are potentially noisy, dependent 356 
on external references used, and could induce social harm when taken out of the particular research 357 
context. In fact, one future approach to evaluate PGS performance may focus on individual-level 358 
metric, where one’s genetic information is evaluated in context of genetic similarity to, say, the 359 
European cohort underlying the GWAS study[33], rather than explicit quantification of proportion 360 
from a labeled ancestry. We also found that sample size and diversity in GWAS, as well as the 361 
availability of large optimization cohort, may complicate the construction and application of PGS 362 
in underrepresented populations. This is another obstacle for Native Hawaiians, as collection and 363 
use of genetic data from indigenous populations are fraught with past misuse that led to general 364 
mistrust from the community[36–38]. For a population already small in size, the availability of 365 
cohorts to optimize these PGS models are also much smaller than that available for other 366 
continental populations, which in turn harms the community in reaping the benefits of genomic 367 
medicine. Thus, an ongoing discussion, engagement, and involvement of the community centered 368 
around issues of participation in research, genetic data collection, and data sovereignty will be 369 
required. Finally, future studies may also focus on traits and diseases that we did not study here, 370 
such as cardiovascular diseases that the Native Hawaiians are also known to be susceptible [18,39], 371 
as well as traits that the Native Hawaiian communities expressed explicit concern and should be 372 
made as research focus, such as asthma [17,30], so to further encourage community participation 373 
in research. It is with the multi-pronged strategy of inclusion in genetics research, reduction of 374 
biases, and focus on community concerns that we can reduce the disparity in PGS model 375 
performance in this case, and alleviate health disparity in general.  376 
 377 
Material and Methods 378 
GWAS summary statistics and PGS Catalog datasets 379 

To comprehensively evaluate the transferability of PGS for the Native Hawaiian population, 380 
an admixed population with substantial East Asian (EAS) and European (EUR) ancestries [19], 381 
we have utilized EAS and EUR GWAS, as well as multi-ethnic GWAS, summary statistics for 382 
training PGS models for BMI, height, and T2D. We collected and curated the largest available 383 
GWAS summary statistics data from the most recent publications [32,34,40–43] (Table S1). In 384 
addition to training PGS models from these latest GWAS, we also obtained and tested all models 385 
from the PGS-catalog database (http://www.pgscatalog.org/) related to these three traits, published 386 
in the database as of 05/18/2022 (Table S4). 387 

In all cases, we downloaded the datasets in GRCh38 coordinates or converted the coordinates 388 
to GRCh38 genome build using triple LiftOver [44] to ensure alleles are aligned in genomic 389 
regions that may have inverted between genome builds. Additionally, we verified the order of 390 
reference and alternative alleles in the GWAS summary data by comparing it to the GRCh38 391 
reference genome. We also removed the indels in the GWAS summary statistics data. 392 

 393 
Study cohorts and quality controls of individual data 394 

To optimize the PGS models for each trait, and to evaluate the prediction accuracy and 395 
transferability of each PGS model, we leveraged the individual genetic data from the Multiethnic 396 
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Cohort (MEC) study [27]. MEC encompasses five major ethnic groups: Japanese Americans, 397 
Native Hawaiians, African Americans, Latinos, and Non-Latino Whites, with up to approximately 398 
70,000 individuals with genome-wide array data. We utilized the subcohorts genotyped with the 399 
Illumina Multi-Ethnic Global Array (MEGA) and Global Diversity Array (GDA) arrays, in total 400 
containing 19,677 (MEGA: 5,022; GDA: 14,655) Japanese Americans (MEC-J), 11,316 (MEGA: 401 
829; GDA: 10,487) Non-Latino White (MEC-W), and 5,388 (MEGA: 4,144; GDA: 1,244) Native 402 
Hawaiians (MEC-NH). MEC-J and MEC-W subcohorts were used as benchmarks for the 403 
prediction accuracies of PGS trained and optimized in East Asian and European populations, 404 
respectively. 405 

We removed population outliers for each population using the results from unsupervised 406 
ADMIXTURE v1.3.0 [45] with the 1000 Genomes Project populations to guide the interpretation 407 
of inferred ancestry components. We pruned the SNPs for linkage disequilibrium (LD) using the -408 
-geno 0.05 and --indep-pairse 100 10 0.1 commands in PLINK v1.9[46]. For the ADMIXTURE 409 
analysis, we set K=5, and each K was calculated for 5 repetitions. For MEC-J and MEC-W, we 410 
removed individuals admixed within the last 1-2 generations and defined a relatively unadmixed 411 
subset based on an inferred minimum of 95% genetic components of East Asian and European 412 
ancestries, respectively. While fully recognizing that genetic ancestries exist on a continuum, and 413 
any attempt to define a discrete population on the basis of inferred genetic ancestry will be arbitrary, 414 
we opted to rely on inferred genetic ancestry to define our EAS and EUR populations in alignment 415 
with the common practices in the field and with the ancestries of the source populations for the 416 
GWAS data we used. In total, we retained 18,705 individuals in MEC-J (MEGA: 4,828; GDA: 417 
13,877) and 8,532 individuals in MEC-W (MEGA: 634; GDA: 7,898) for analysis. We did not 418 
filter out any self-reported Native Hawaiian individuals on the basis of estimated genetic ancestry, 419 
since it is a well-known admixed population with a continuous cline of any major ancestry 420 
components that can be estimated [15]. Furthermore, it is the community belief that estimated 421 
genetic ancestries should not be used as an exclusion criterion for community membership and 422 
should not supplant well-established custom of self-identity or genealogical records. Therefore, 423 
we included all self-reported Native Hawaiians within the MEC as a single population, although 424 
at times we do evaluate the efficacy of PGS models for subset of MEC-NH with higher proportion 425 
of estimated Polynesian ancestry, both for a better evaluation of using PGS in realizing precision 426 
medicine at the individual level and for assessment of the generalizability of PGS models to other 427 
Polynesian-ancestry populations. 428 

To avoid overfitting PGS models in validation cohort, we randomly subset the individuals 429 
into three non-overlapping groups when evaluating PGS models for BMI and height: 500 430 
individuals per population for LD reference, 3000 individuals per population for optimizing the 431 
PGS model, and 1000 individuals per population for validating the PGS model (Fig. 1). For T2D, 432 
we randomly selected 800 cases as well as 1500 controls for a total of 2300 individuals per 433 
population for optimization. We then used all remaining cases and controls from each cohort for 434 
validation: 3315 cases and 6700 controls for MEC-J, 496 cases and 4063 controls for MEC-W, 435 
392 cases and 549 controls for MEC-NH. T2D cases were defined based on any self-reported T2D 436 
diagnosis by a physician or medical professional, or the use of medication for treatment of diabetes, 437 
on questionnaire 1 to 5 of the MEC survey or based on Medicare claim data based on ICD-9 codes 438 
(249-250.99) or ICD-10 codes (E11.X [47,48]). using information from the phenotype file, 439 
including patient age and T2D status. This process involves tracking individuals over time, 440 
considering records across decades. If an individual's T2D status changes from negative to positive 441 
in later traces, the record is updated accordingly. Our strategy entails evaluating all available 442 
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records for each person across five time points. Records with missing data are excluded, ensuring 443 
the reliability of our findings. For individuals used as LD reference or as validation, we randomly 444 
selected individuals who were genotyped on the MEGA array or GDA array, respectively, for each 445 
of MEC-J, MEC-W, and MEC-NH. For individuals used in optimizing PGS model, we selected 446 
from those genotyped on the MEGA array for MEC-J and MEC-NH and from those genotyped on 447 
the GDA array for MEC-W due to availability of samples. 448 

 449 
Polygenic Score development and validation 450 

Two commonly used approaches were utilized in this study to construct the PGS model: 451 
Clumping and Thresholding (C+T) [6,49] and LDpred2 [7]. The C+T method involved clumping 452 
SNPs in LD based on r2, and distance (kb) parameters, and thresholding SNPs based on specific 453 
thresholds of p-values [50–52]. On the other hand, LDpred2 employed the Bayesian method to 454 
estimate the effects of genetic variants on a specific trait and considered the LD information 455 
between genetic variants [53]. We followed previous studies [54] in constructing PGS models from 456 
C+T and LDpred2, with the following modifications. For the C+T, we used p-values thresholds 457 
of: 0.1, 0.2, 0.5, 0.05, 0.01, 0.005, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5, 5e-6, 1e-6, 5e-7, 1e-7, 5e-8; r2 458 
values (based on the LD reference sample of 500 individuals) of: 0.2, 0.1, 0.01, 0.005, and distance 459 
in kilobases (kb) window sizes: 250, 500. Together we evaluated 128 combinations of parameters 460 
to identify the optimal PGS (by partial R2 and pseudo R2 for quantitative and dichotomous traits, 461 
respectively; see below) in the optimization sample of 3000 individuals. For LDpred2, we used a 462 
grid of values for hyper-parameters/tuning parameter - causal variants (ρ), ℎ2 (the SNP heritability), 463 
and sparsity (whether to fit some variant effects to exactly zero) to construct PGS. We used ρ from 464 
a sequence of 17 values from 0.01 to 1 on a log-scale, a range of ℎ2 within (0.7, 1, 1.4) × estimated 465 
heritability, and a binary sparsity option of either on and off (LDPred2-grid models). In addition, 466 
we tested a model assuming infinitesimal causal effects, where each variant assumed to contribute 467 
to disease risk (LDPred2-inf model). In total, we evaluated 103 PRS models using LDPred2.  468 

To evaluate the association of a PGS model in either the optimizing sample or validation 469 
sampling, we evaluated a regression model using the PGS for each individual as the predictor 470 
variable and the trait or disease as response variable using R (version 4.0.0) [55]. For BMI and 471 
height, the trait was stratified by sex, and regressed against age and age2. We extracted the residuals 472 
from the model using the R package stats v3.6.2 [55] and the residuals() function, and inverse 473 
normalized the residuals using the R package norm v1.0 [55] and the qnorm() function. Finally, 474 
we merged the results from males and females. For covariates, we additionally included ten 475 
Principal Component Analysis (PCA) data to adjust for the impact due to ancestry and population 476 
structure. For T2D, we used logistic regression, with covariates age, sex, and ten principal 477 
components. The primary metric of PGS model efficacy is the partial R2 for quantitative traits and 478 
pseudo R2 for dichotomous traits. Partial R2 was calculated using the R package rsq v2.5 [56] and 479 
its function rsq.partial(). Pseudo R2 was calculated using the R package DescTools v0.99.43 [57] 480 
and its function PseudoR2(). To obtain the pseudo R2 with only the PGS score effect in the 481 
dichotomous trait, we calculate the difference in pseudo R2 between the full model (including PGS) 482 
and the partial model (without the PGS score). To obtain confidence interval for the partial or 483 
pseudo R2, we computed the standard error from 1000 bootstrap samples. Transferability of PGS 484 
is evaluated based on differences of the partial or pseudo R2 between two populations or between 485 
two PGS models. Significance is calculated based on testing differences in mean of the partial or 486 
pseudo R2 distribution from the bootstrap samples. 487 
 488 
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Data and code availability 489 
Genetic data utilized in this study will be available on dbGAP (accession number: 490 

phs002183.v1.p1). GWAS summary statistics were downloaded from literature, see Table S3 for 491 
reference. For the downloaded PGS models from the PGS catalog, see Table S4. We built a 492 
package to incorporate the pipeline for training, optimizing, and validating the PGS models. The 493 
package is publicly available on GitHub: https://github.com/imyingchulo/gprs.  494 
 495 
Supporting information 496 
Table S1. Parameters of the best genomic PGS models in Design I. 497 
For each combination of complex trait, GWAS dataset, and optimization cohort, this table lists the 498 
model parameters and performance (in the optimization cohort) for the best genomic PGS model. 499 
To optimize, each combination of trait and GWAS was evaluated in a grid-like search in the 500 
optimization cohort, with the best performing model among the candidate 128 C+T models and 501 
103 LDpred2 models. Across all combinations of GWAS dataset and traits, LDpred2 produced the 502 
best model based on partial R2 (for BMI and height) or pseudo R2 (for T2D) in the optimization 503 
cohort in 11 out of 14 instances. 504 
 505 
Table S2. Parameters of optimal genomic PGS models when optimized in MEC-NH (Design 506 
II). As is the case for Table S1, but the optimization cohort is in MEC-NH in each case. 507 
 508 
Table S3. Details of GWAS summary statistics and references used in this study. 509 
This table provides the overview of GWAS datasets used in this study, including the data resources, 510 
cohort, SNPs, genome built, and population size. 511 
  512 
Table S4. Additional information of PGS models from PGS catalog evaluated in this study 513 
This table provides the references and additional information for the 39 PGS models included in 514 
this study. 515 
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