ABSTRACT
Cardiac surgery-associated Acute Kidney Injury (CSA-AKI) is a significant complication that often leads to increased morbidity and mortality. Effective CSA-AKI management relies on timely diagnosis and interventions. However, many cases of CSA-AKI are detected too late. Despite the efforts of novel biomarkers and data-driven predictive models, their limited discriminative and generalization capabilities along with stringent application requirements pose challenges for clinical use. Here we incorporate a causal deep learning approach that combines the universal approximation abilities of neural networks with causal discovery to develop REACT, a reliable and generalizable model to predict a patient’s risk of developing CSA-AKI within the next 48 hours. REACT was developed using 21.5 billion time-stamped medical records from two large hospitals covering 23,933 patients and validated in three independent centers covering 30,963 patients. By analyzing the causal relationships buried in the time dimensions, REACT distilled the complex temporal dynamics among variables into six minimal causal inputs and achieved an average AUROC of 0.93 (ranging from 0.89 to 0.96 among different CSA-AKI stages), surpassing state-of-the-art models that depend on more complex variables. This approach accurately predicted 97% of CSA-AKI events within 48 hours for all prediction windows, maintaining a ratio of 2 false alerts for every true alert, improving practical feasibility. Compared to guideline-recommended pathways, REACT detected CSA-AKI on average 16.35 hours earlier in external tests. In addition, we have established a publicly accessible website and performed prospective validation on 754 patients across two centers, achieving high accuracy. Our study holds substantial promise in enhancing early detection and preserving critical intervention windows for clinicians.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
None of this material has been published or is under consideration for publication elsewhere. We declare no competing financial interests. This work was supported by the "Public service platform for artificial intelligence aided diagnosis in medical and health industry" of MIIT Science and Technology Project (2020-0103-3-1).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Institutional review board of the Chinese PLA general hospital gave ethical approval for this work Ethical Review Committee of Nanjing Drum Tower Hospital gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes