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ABSTRACT

Cardiac surgery-associated Acute Kidney Injury (CSA-AKI) is a significant complication that often leads to increased
morbidity and mortality. Effective CSA-AKI management relies on timely diagnosis and interventions. However,
many cases of CSA-AKI are detected too late. Despite the efforts of novel biomarkers and data-driven predictive
models, their limited discriminative and generalization capabilities along with stringent application requirements
pose challenges for clinical use. Here we incorporate a causal deep learning approach that combines the universal
approximation abilities of neural networks with causal discovery to develop REACT, a reliable and generalizable
model to predict a patient’s risk of developing CSA-AKI within the next 48 hours. REACT was developed using
21.5 billion time-stamped medical records from two large hospitals covering 23,933 patients and validated in three
independent centers covering 30,963 patients. By analyzing the causal relationships buried in the time dimensions,
REACT distilled the complex temporal dynamics among variables into six minimal causal inputs and achieved an
average AUROC of 0.93 (ranging from 0.89 to 0.96 among different CSA-AKI stages), surpassing state-of-the-art
models that depend on more complex variables. This approach accurately predicted 97% of CSA-AKI events within
48 hours for all prediction windows, maintaining a ratio of 2 false alerts for every true alert, improving practical
feasibility. Compared to guideline-recommended pathways, REACT detected CSA-AKI on average 16.35 hours earlier
in external tests. In addition, we have established a publicly accessible website and performed prospective validation
on 754 patients across two centers, achieving high accuracy. Our study holds substantial promise in enhancing
early detection and preserving critical intervention windows for clinicians.

Main

Annually, over two million patients globally undergo cardiac
surgery to treat valvular heart disease or to correct congeni-
tal heart defects1, 2.Despite advancements reducing procedure
mortality, the invasive nature of these surgeries—marked by
extensive incisions and complex, lengthy operations—often
results in significant post-operative complications, with the
highest incidence of cardiac surgery-associated acute kid-
ney injury (CSA-AKI)3. Those with severe CSA-AKI have
a mortality rate 3-8 times higher than others, and even with
in-hospital renal recovery, CSA-AKI significantly indepen-
dently associated their 10-year mortality risk1. However, the
prognosis for CSA-AKI patients can be improved when timely
interventions are applied, such as hemodynamic stabilization

and volume optimization4, 5. But there’s a catch: the inter-
vention windows for effective intervention is limited, making
early detection crucial.

In clinical practice, the diagnosis of acute kidney injury
(AKI) often hinges on creatinine levels. However, kidney
damage can manifest before a significant rise in creatinine6.
Emerging biomarkers promise earlier detection, but their adop-
tion is constrained by modest discrimination capabilities, the
invasive and costly nature of the associated diagnostic pro-
cedures7, 8. The Cleveland score9 and Mehta score10, based
on traditional statistical methodologies, remain the primary
prognostic instrument in contemporary clinical practice due to
its inherent simplicity, methodological transparency, and ease
of implementation have solidified its position. However, its
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reliance on a static analytical framework limits its predictive
accuracy in the dynamically evolving clinical scenario. This
deficiency is particularly evident in the cardiac surgical cohort,
characterized by extended median hospitalizations—15 days
on average—where patients’ clinical trajectories may undergo
swift and unpredictable alterations11.The issue is exacerbated
by the complexity of metabolism and individual variations in
drug response, which obscure the identification of optimal in-
tervention windows for CSA-AKI, often resulting in patients
observed as at severe stages.

Neural networks, renowned for their proficiency in han-
dling high-dimensional and time-series data, demonstrate po-
tential in dynamically tracking patient conditions12, 13. How-
ever, while adept at identifying intricate relationships, neural
networks often conflate correlation with causation among
variables, raising concerns about the reliability of their diag-
nostic outcomes and potentially resulting in suboptimal or
dangerous decisions14–16. Furthermore, this inherent com-
plexity, heightened by sensitivity to input data, impedes its
broad applicability in clinical contexts. Additionally, artifi-
cial intelligence (AI)’s dependence on ultra-high-dimensional
features during prediction muddies the path from data to ac-
tionable evidence. For instance, Tomasev et al.17 introduced a
model utilizing 620,000 entries from hundreds of features for
real-time AKI prediction. Despite its impressive performance,
this approach necessitates collecting an extensive number of
inputs in any prospective study to ensure accurate predictions.
In practical clinical use, the absence of any single input could
compromise or even incapacitate the predictive algorithm18.
These highlight a clinical conundrum in neural networks ap-
plication: the very above attributes that render AI invaluable
for data analysis simultaneously make it vulnerable from a
statistical viewpoint14, 19.

Bridging the gap between traditional statistical inference
and advanced predictive capabilities, causal machine learning
emerges as a critical intersection of AI and statistics, marking
a shift from mere prediction to a more profound understand-
ing20, 21. To facilitate dynamic prediction of CSA-AKI, we
have developed a temporal causal deep learning architecture
tailored for medical data, which is named REACT (Real-
time Evaluation and Anticipation with Causal disTillation).
As demonstrated in Figure 1, REACT combines the univer-
sal approximation abilities of neural networks with a causal
discovery module to eliminate confounders or spurious vari-
ables22–27. This approach, simulating the process of Random-
ized Controlled Trials (RCT), sequentially conducts simulated
interventions on all variables to assess their causal effects
on the outcomes. It generates causal graphs and builds neu-
ral networks based on these graphs, identifying interactions
and spatiotemporal dynamics buried in large, time-varying
datasets, thereby reducing the likelihood of data-driven errors
in AI models. In addition, our model significantly lowers the
number of input variables required during application, shift-
ing computational intensity and complex variable input to the
training phase. This represents a principal advantage over

existing algorithms that rely heavily on high-dimensional data
inputs.

In our model, we used 21.5 billion timestamped med-
ical records as initial inputs, drawn from two large hospi-
tals, encompassing 23,933 cardiac surgery patients. Through
causal deep learning, we distilled six dynamic variables (most
common and cost-effective) for actual application input and
validation on three independent hospitals (30,963 patients).
As causal relationships remain stable across different envi-
ronments, predicting CSA-AKI using only causal variables
improves our model’s universal applicability. To advance this
field, we have created a user-friendly publicly accessible web-
site. Bridging the “last mile” from predictive modeling to
application, we conducted prospective validation in 754 pa-
tients across two centers. The application of this technology in
AKI is set to constitute a paradigm shift in nephrology teleme-
try and revolutionize the treatment of hospitalized patients,
transitioning from reactive to proactive care.

Results

Comprehensive clinical dataset from five major hospitals.
The study incorporated data from five large-scale general hos-
pitals: The First and Third Medical Centers of the Chinese
PLA General Hospital in Beijing, China, were used for the
derivation of the predictive model and internal validation(from
2000 to 2021); For model external tests, we utilized the Sixth
and Seventh Medical Centers of the Chinese PLA General
Hospital, along with the Nanjing Drum Tower Hospital in
Nanjing, China (from 2000 to 2023). Our cohort, comprising
54,896 patients, was selected from a pool of approximately
6.19 million individuals with 8.3 million visits treated at five
major general hospitals. All five hospitals contributing to a
collective database of over 21.5 billion time-stamped medical
records. The PLA Hospital system serves as the key medical
facility in northern China, while the Nanjing Drum Tower
Hospital holds a comparable status in the south. Figure 2b
illustrates the population density distribution across China,
and Figure 2c represents the patient distribution within our
study. As such, our research captures a substantial patient
demographic from across China.

After adhering to the exclusion criteria detailed in the
Methods section, the derivation cohort included 14,513 pa-
tients (illustrated in Figure 2a), with a median age of 56.2
years and 28.1% being women. Baseline clinical characteris-
tics and operative information for all participants are outlined
in Figure 2a, 2d and Supplements C. In accordance with the
modified KDIGO (Kidney Disease: Improving Global Out-
comes) definition, the incidence of AKI was 20.1% (n = 2,913
patients). An interdisciplinary team harmonized synonyms
and consolidated or substituted approximately 213 synony-
mous variables, employing medical guidelines and remote
supervision through standardized entity libraries. A suite of
techniques was employed for comprehensive data verification,
including threshold checking, evaluation of linear relation-
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Figure 1. Overview of the model development. a, Database preprocessing. The raw database is collected from electronic
health records of all patients with cardiac surgery and then processed by merging the same items with different names (such as
laboratory tests, and vital signs) coding the same variable, excluding the rarely-present variables, converting units and
time-stamps, excluding artifacts, and mapping textual test results to real-valued numbers. b, Normalization and sequential
construction for each patient. The dynamic variables of each patient are extracted from the preprocessed database and then
sampled to structured time-series with a two-hour time grid. The presence and absence of each variable are presented with a
distinct feature. CSA-AKI labels are obtained at each time point of assessment with multiple prediction windows (i.e.
CSA-AKI within 6, 12, 24, or 48 hours). All data and label pairs are divided into a training set, an internal (or in-distribution)
validation set, and an external (or out-of-distribution) testing set. c, Causal deep learning. Our model consists of two iterative
phases. The prediction model training phase predicts risks for CSA-AKI at each time-points. The Causality learning phase
learns causal graphs with a fixed prediction model. Both phases are performed with the help of simulated intervention, which
helps to build a causal prediction model that remains stable across environments. d, Model evaluation. Our method is evaluated
with only causal features as input, (e.g., only six variables). AUROC, AUPRC along with other criteria are calculated by
excluding ambiguous labels (that no serum creatinine tests are within the corresponding prediction window).
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Fig 2 病⼈信息

a Flowchart of Patient Enrollment

d Probability Density Distribution of Patient Age Across Centers

c Distribution of Patients Included in the Study

b Population Density Distribution Across Provinces in China

• The First Medical Centers
• The Third Medical Centers
• The Sixth Medical Centers
• The Seventh Medical Centers

• The Nanjing Drum Tower Hospital

Figure 2. Comprehensive Visualization of Patient Demographics, Enrollment, and Treatment. a, Flowchart of Patient
Enrollment: This diagram provides a detailed presentation of the criteria, number, and type of patients enrolled at each stage at
the different medical centers, and also demonstrates the definitions of the different types of AKI. b, Population Density
Distribution Across Provinces in China: This map shows the population density and geographical distribution of different
medical centers, darker shades indicate higher density. c, Distribution of Patients Included in the Study: The size of the circle
represents the number of patients enrolled in the study in their province. d, Probability Density Distribution of Patient Age
Across Centers: The smooth lines represent the probability density function for each center’s patient age distribution.

ships, and machine-learning-based outliers detection. Also,
we did not include procedural factors that may be difficult to
measure, such as aortic cross-clamp time. All these enhance
the transferability and practicality of the model. After a man-
ual approval process led by senior physicians, around 34,600
data entries were rectified.

To achieve dynamic predictions along the temporal di-
mension, the dataset was structured into a time-sliced format,
segmented at 2-hour intervals. The outcome for each seg-
ment was labeled using the KDIGO criteria: segments were
designated as ”AKI Stage I” (Mild AKI) if they displayed an
elevation in serum creatinine by ≥0.3 mg/dL over a span of 48

hours, as ”AKI Stage II” (Moderate AKI) if serum creatinine
doubled, and as ”AKI Stage III” (Severe AKI) if serum creati-
nine tripled or reached ≥4.0 mg/dL with an acute increment
of at least 0.5 mg/dL. However, a significant 29.3% of these
time slices, due to the absence of adequate creatinine data,
were classified as “Unknown”. Overall, we identified 380,563
slices with AKI events of 2,913 patients from 1,753,290 time-
segments of 14,513 patients in the derivation cohort.

Enhanced predictions through joint causal discovery and
deep learning. It has been widely discussed in the literature
that deep learning, when based on associations rather than
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causation, may lead to unstable predictions16 (see Method).
To reveal stable underlying causal structures and achieve more
precise and generalizable predictive outcomes, we propose
a novel two-phase algorithmic structure. This framework
harnesses the universal approximation capabilities of neu-
ral networks28 and incorporates a causal discovery method
tailored for time-series data23, 25. Figure 1c illustrates the
“Prediction model training phase” and the “Causality learning
phase” (with the detailed training process illustrated in Ex-
tended Figure 1 and detailed algorithm discussed in Methods),
showing how the two phases were cohesively performed to
complement and enhance each other’s performance. During
the “Prediction model training phase”, our model forecasts
the risk of future CSA-AKI at successive time points, and
the “Causality learning phase” focuses on learning causal
graphs with fixed weights for the neural network. These two
phases synergistically evolve during the training process, the
former leverages the network’s universal fitting capabilities
to construct resilient and robust prediction models, while
the latter particularly mimics Randomized Controlled Trials
(RCTs), sequentially conducting simulated interventions on
all variables, steering the prediction model to evaluate their
impact on outcomes, and progressively distilling the causal
variables and eliminating the spurious ones25, 29, 30. In Meth-
ods, we mathematically show how our approach recovers the
actual causality. Through this collaborative integration, we
developed the “REACT” model (Real-time Evaluation and
Anticipation with Causal disTillation). REACT is engineered
to dynamically generate the risk score of a patient developing
AKI at any stage within the following 6, 12, 24, 48 hours and
provide physicians with proper intervention opportunities.

High performance in predicting CSA-AKI. As demon-
strated in Figure 1, REACT can dynamically forecast the
likelihood of patients progressing to different AKI stages
within 48 hours following surgery. Specifically, the model’s
predictive efficacy for severe AKI represented by the AU-
ROC, varied from 0.949 to 0.972. The predictive performance
heightened as the proximity to the event narrowed (6 hours:
0.972, 12 hours: 0.971, 24 hours: 0.969, 48 hours: 0.949).
This temporal trend was consistently observed in predictions
for AKI stages II and III, for detailed results, see Figure 3 and
Supplements F. In scenarios featuring imbalanced datasets,
the AUPRC provides a more nuanced assessment than the
AUROC. For severe AKI predictions, our model achieved an
AUPRC spanning 0.665 to 0.739 (as shown in Supplements
G: 6 hours: 0.739, 12 hours: 0.737, 24 hours: 0.724, 48
hours: 0.665), Furthermore, REACT showed great accuracy
for mild and moderate AKI (stages I and II) predictions within
48 hours, registering an AUROC between 0.93 and 0.95 and
an AUPRC from 0.65 to 0.73. Overall, the model exhibited
increased precision for more severe AKI predictions. Contin-
uous scores adeptly approximate the time to event failure (as
portrayed in Extended Figure 6). Following a post hoc recal-
ibration using isotonic regression, we achieved near-perfect
alignment between the model’s score and the observed risk.

This was reflected with an overarching Brier score of 0.064.
Calibration tests conducted across diverse patient subsets re-
vealed that the model performs with consistent accuracy for
most patient cohorts.

Consistent efficacy across diverse patient cohorts. The
performance of REACT was systematically evaluated across
cohorts differentiated by age, gender, center, surgical type,
year of admission and the mode of admission (details in Figure
4 and Supplements H, I). Overall, the model’s performance
was positively correlated with the incidence rate of events
and the completeness of data. The model showed exceptional
efficacy in scenarios involving severe CSA-AKI, potentially
due to more pronounced clinical indicators. More specifically,
REACT consistently demonstrated better predictive perfor-
mance for male patients compared to female patients across
various tasks, with the AUPRC for males being approximately
1.16 to 1.34 times higher than that for females. This discrep-
ancy might be related to the lower incidence rate of events
in women. REACT’s predictive performance was relatively
stable across different age groups, with the AUPRC generally
exceeding 0.6. This stability was also observed across differ-
ent types of surgeries; however, the model’s performance was
less effective for multiple hybrid surgeries, underscoring the
challenges these surgeries pose to predictions. The model’s
performance was consistent across different admission years,
but it was notably less effective for patients admitted after
the year 2020. This difference may be attributable to the
outbreak of the COVID-19 pandemic in 2019, which likely
introduced unique medical dynamics affecting the model’s
performance. Additionally, patients admitted through emer-
gency departments had significantly higher event incidence
rates and model performance compared to those with routine
admissions, possibly due to more severe conditions and more
frequent measurements of indicators.

The clinical approach of the REACT’s utilization. As a
demonstration of how a hospital might employ REACT, we
set a threshold to anticipate the event’s occurrence and rec-
ommend appropriate interventions with two false predictions
for every true positive (details in Supplements P). This ap-
proach accurately predicts 97% of AKI events, on average
14.6 hours before any CSA-AKI event(internal validation). As
the event approaches, the model’s predictive accuracy incre-
mentally improves: 75.8% of cases are predicted successfully
48 hours in advance, and 85% are predicted 24 hours ahead.
In scenarios involving patients with severe afflictions or those
undergoing renal replacement, the model’s performance is
notably enhanced, demonstrating a recall rate of 89% and a
precision of 96%, as illustrated in Figure 3. We also provide
a comprehensive report on the model’s recall rate, accuracy,
precision, and other predictive metrics at different thresholds
and time points in Supplements M-O. For the total inaccu-
rate predictions(false-positives, detailed in Extended Figure
2). A deeper analysis revealed that 34.4% of these inaccura-
cies were due to delayed AKI onset within 24 hours, 8.2%
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Fig 3 总体性能
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Figure 3. Model performance. a, ROC and PRC curves for mild AKI within 24 hours, on internal validation (randomly
allocated) and external testing datasets (the sixth and the seventh medical center of Chinese PLA General Hospital, and Nanjing
Drum Tower Hospital, which is not included in the training and validation datasets), comparing with baseline methods without
casual deep learning (see methods), and the corresponding. b,The AUROC and AUPRC on other prediction tasks and windows.
Our model supports multi-task learning, i.e., 4 kinds of prediction windows (6, 12, 24, 48 hours), each with 3 stages of AKI.

are attributed to 24-48 hours after time of assessment. Only
about half (50.7%) are actual false positives that didn’t reach
the respective thresholds—a trade-off made to avoid alarm
fatigue.

In our dataset, we observed that 40% of patients were
already at AKI stages II-III when detected. As illustrated in
Supplements Q, these patients had a relative risk (RR) of 2.38
(p <0.001) for mortality compared to those detected at stage
I and experienced an average postoperative hospital stay ex-
tension of 1.14 day. This could be attributed to some patients
missing the optimal intervention window, thus, early predic-
tion for these patients becomes crucial. Our model achieved
an 83% predictive accuracy within 24 hours for patients ini-
tially observed at stage I, extending the intervention window
by 16.29 hours, which could significantly improve patient
outcomes.

Robust performance in external tests. The external testing
set comprised 16,987 patients from three major medical insti-
tutions: the Sixth Medical Center, the Seventh Medical Center,
and Nanjing Drum Tower Hospital (median age 60 years, 35%

women). As illustrated in Supplements C, these three hos-
pitals have notably diverse patient characteristics. Despite
these variations, our model consistently outperformed other
methods when applied to these datasets, achieving an average
AUROC of 0.92. Similarly, calibration was good with Brier
scores of 0.062(depicted in Figure 3, Extended Figure 6 and
Supplements J, K). When applying the threshold determined
from the training set, our model demonstrated average speci-
ficity rates of 0.81, 0.83, and 0.85 for mild, moderate, and
severe CSA-AKI respectively, coupled with corresponding av-
erage recall rates of 0.78, 0.89, and 0.95. Notably, the model
could predict 95% of events in advance, with an average lead
time of 16.35 hours. An analysis of different subgroups within
the external testing set yielded conclusions largely consistent
with those from the training set(shown in Extended Figure 4).
In addition, the model’s performance exhibited a more pro-
nounced negative correlation with age and a more significant
decline in performance post-2020. This decline could poten-
tially be attributed to the unique medical dynamics introduced
during the COVID-19 pandemic, as mentioned previously.
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Figure 4. Model performance of different patient cohorts in internal validation datasets. a, Displays the AUROC
predictions of REACT across all subgroups. Different colors signify the model’s performance at various CSA-AKI stages, with
the vertical range indicating the model’s prediction performance variability within 48 hours of the event occurrence. The
corresponding abbreviations in the operation type subgroup are as follows: AS, Aortic surgery; CHS, congenital heart disease
corrective surgery; CABG, coronary artery bypass grafting; PC, pericardiectomy; VA, valve surgery. b, Illustrates the AUPRC
predictions of REACT in different subgroups and provides detailed information about the population and incidence rate within
each subgroup. Transverse subgraphs 1-5 specifically depict the model’s performance across varying surgical types, medical
centers, age groups, admission years and genders. Longitudinal subgraphs 1-3 use bar graphs to show the incidence rate of
CSA-AKI stage III- I among patients of different subgroups (as denoted on the left y-axis) and use plots to show the
corresponding CSA-AKI prediction AUPRC with the shadow indicating performance variability within 48 hours of the
event(as denoted on the right y-axis); In Longitudinal subgraph 4, the total number of patients in each subgroup is represented.
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This aspect of the model’s performance, indicating a change
in efficacy with patient age and external factors like the pan-
demic, underscores the need for ongoing model evaluation
and adaptation in response to evolving clinical landscapes.

Superior performance to traditional models. In this study,
we conducted a comprehensive comparison of our model’s
performance against widely recognized predictive algorithms
in forecasting predefined outcomes across various timeframes.
The comparative algorithms we selected include XGBoost31,
a machine learning algorithm widely used in clinical settings
due to its robustness and efficiency, the classic Multilayer
perceptron (MLP)28, Long Short-Term Memory (LSTM)32,
and Transformer models33, which demonstrate notable ad-
vantages in sequential data prediction for their revolutionary
attention mechanism and have set new benchmarks in han-
dling sequential data, particularly in complex tasks involving
large datasets. Figure 3 and Supplements F illustrate the AU-
ROC and AUPRC of each model over various time intervals,
Our model outperformed the others at all time points. Taking
the prediction of severe AKI within 24 hours as an example,
REACT achieved AUROC scores of 0.969 and 0.964 in the
internal validation set and external test set, respectively. These
scores were significantly higher than those of XGBoost (0.65),
MLP (0.913 and 0.739), LSTM (0.880 and 0.850), and Trans-
former (0.926 and 0.943). Notably, despite being based on
entirely new data, REACT exhibited minimal performance
fluctuation in the external test set, maintaining a median AU-
ROC loss of just 0.008 (interquartile range 0.005–0.012). This
performance markedly exceeded that of the comparator mod-
els (MLP: 0.151 0.144,0.163, LSTM: 0.027 0.020–0.030, and
Transformer: 0.029 0.023,0.040). These findings unequivo-
cally demonstrate the superior precision and stability of our
React model in the dynamic prediction of CSA-AKI.

Reliable predictions from minimal variables. Benefiting
from the intrinsic relationships uncovered during the causal
discovery phase, our finalized model requires only six indica-
tors as input to outperform mainstream algorithms that rely
on all variable inputs. It’s imperative to clarify that REACT’s
predictive process, though based on only six causally signifi-
cant indicators, does not imply that the model’s information
is derived solely from these variables, i.e., our approach is
not trivially performing feature selection before deep learning.
The model comprehensively learns and captures the dynamic
interplay among all variables within the temporal sequence
and generates a causal graph to reveal the underlying causal
structures, which serve as explanation results of the model.
This enhances the model’s efficiency, generalizability, and ap-
plicability in real-world clinical settings. In the experiments
shown in Extended Figure 5 we show that training a regular
neural network (e.g., MLP, LSTM, Transformer) with only
these six selected variables, i.e., performing feature selec-
tion before deep learning instead of our causal deep learning
strategy, the AUROC/AUPRC scores are lower. Taking the
prediction of severe CSA-AKI within 24 hours as an example,

REACT achieved an AUPRC of 0.724 in the internal valida-
tion set, which is 1.18 to 3.20 times higher than algorithms
trained using the selected causal variables. This superiority
is even more pronounced in the external test set, where the
improvement ranges from 1.10 to 7.44 times. These find-
ings demonstrate that our causal deep learning approach not
only increases generalizability by pinpointing causal variables
but also prevents overfitting throughout the training process,
thanks to a dropout-like34 sampling strategy (see Methods).

Importance analysis of predictive variables based on
causal inference. With the trained network and discovered
causal graph, we can ascertain the contribution of each vari-
able. This is achieved by comparing the predicted risk with its
counterfactual version when absent—essentially gauging the
shift in predicted probability upon altering a specific variable
(details in Methods). A critical balance between model capac-
ity and transferability is necessary when predicting CSA-AKI
using causal variables. As shown in Figure 5c and 5d, the
causal variables ultimately included in REACT are blood urea
nitrogen, uric acid, Lactate Dehydrogenase, Creatine Kinase
Isoenzyme, and age. Figure 5b illustrates their individual
and collective importance. It is noteworthy that the model
can still make predictions with a slight sacrifice in perfor-
mance when a few variables are missing. We also provide
detailed experimental data on the model’s performance with
different numbers of causal variables in the Supplements L
and considering the variability of available variables in actual
clinical scenarios due to hospital differences, we also offer
four versions of REACT with varying degrees of variable
richness on our code repository (https://github.com/
jarrycyx/UNN/tree/main/REACT).

The website application and a prospective validation. To
increase the accessibility for users and streamline the test-
ing process of our model, we created a web-based platform
(http://www.causal-cardiac.com) tailored for dy-
namic early alerts of CSA-AKI. As showcased in Figure 6a,
the user interface provides the functionality to input baseline
demographics and causal predictor variables with the capa-
bility for multiple data entries. Upon entering the required
data, the underlying model, powered by a pre-trained neural
network with integrated causal discovery, generates the likeli-
hood of CSA-AKI episodes at multiple intervals over the next
48 hours. Importantly, the model indicates specific instances
recommending either the initiation or escalation of medical
interventions, thereby underlining its pivotal role in clinical
scenarios.

To ascertain the clinical utility of this application, we im-
plemented it at the First Medical Center and Nanjing Drum
Tower Hospital. From June to October 2023, we prospectively
amassed data from 754 patients who underwent cardiac proce-
dures. Throughout their hospitalization, medical professionals
diligently utilized this tool, updating patient details in real-
time and forecasting imminent CSA-AKI episodes(see Figure
6b). In this period, there were 129 documented AKI events.
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albumin Direct bilirubin Prothrombin time activity Phosphorus Creatine Kinase Glucose

Top 12 contributing variables

Average causal effect for each variable in models
(Patients with AKI)
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6 var. model 

Top 12 variables in 
all models 

Average causal effect for each variable in models
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Fig 4 变量可解释

b Causal effect for 6 var. model
(Patients with AKI)

Causal effect for 6 var. model
(Patients without AKI)

Scores for models with different 
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a

6 var.
model

6 var.
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Figure 5. Importance analysis of predictive variables. a, The relationships between the number of causal variables, internal
validation performance, and external testing performance. Here the baseline is Transformer. b, Local feature importance with
the 6 variables setting calculated by analyzing individual direct causal effects. c, Global feature importance for various models
with different causal variables calculated by analyzing direct causal effects. (show only the top 12 variables for simplicity). Y
axis in (b) and x axis in (c) show absolute values of the importance, while the color demonstrates the signs. d, Full names of
top 12 contributing variables.

Impressively, our model preemptively identified 121 (93.8%)
of these episodes for all prediction windows, albeit at the cost
of 244 false positives. When predictions were spot-on, the
REACT system granted clinicians an average lead time of 16
hours for intervention.

Discussion
Here we demonstrate the practical feasibility of causal deep
learning models for early detection of CSA-AKI within the
next 48 hours, which can be used to improve perioperative
management. Early detection of CSA-AKI is challenging due
to the inherently ambitious intricacies of physiological mecha-
nisms35, the insensitivity of biomarkers36, 37, and the rigorous
application requirements of predictive models38, 39. This is
despite the recent shift towards novel biomarkers that promise
enhanced early detection capabilities for CSA-AKI. However,
these methods are not ready for clinical routine use due to
their modest discriminative capabilities, invasive nature, and

the need for specific kits or expensive equipment36, 40.
To address these challenges, in this study, we develop

and validate REACT, a temporal causal deep learning model
trained on simulated RCTs for real-time prediction of full-
stage CSA-AKI. Developed from a novel two-phase algorith-
mic framework, REACT not only achieves superior perfor-
mance, but also ensures lightweight variable inputs during its
application by capturing stable underlying causal structures.
The final model, incorporating six causal variables (age, serum
creatinine, urea nitrogen, uric acid, lactate dehydrogenase, and
creatine kinase enzyme), demonstrated superior prediction
accuracy in both training and three independent validation
cohorts. Compared to guideline-recommended pathways, RE-
ACT detected CSA-AKI on average 16.35 hours earlier in
external tests, 14.65 hours earlier in internal validation.

Renal replacement, as the only effective treatment for
CSA-AKI, is generally reserved for the most severe patients.
In the absence of additional proven effective treatments, man-
agement of CSA-AKI has focused on early detection and the
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Fig 6 算法的应⽤和单个病⼈反事实分析

a The website and operating interface b The performance of REACT in prospective validation

c Individual causal variable importance analysis based on counterfactuals

Figure 6. The Online platform and prospective validation. a, The website and operating interface. The platform allows for
the input of baseline characteristics, including age, gender, and type of surgery. Users can also enter predictor variables such as
time, and serum creatinine. The system is designed to accommodate multiple measurement data entries. Model output
showcasing the risk score of AKI at different stages within the subsequent 48 hours. Detailed model output indicating moments
when interventions are recommended. b, The performance of REACT in prospective validation. This subgraph presents ROC
and PRC curves for all AKI stages within 24 hours. c, Individual causal variable importance analysis based on counterfactuals.
A female patient in their 50s with hypertension, diabetes mellitus, and chronic heart failure was admitted to the hospital for
coronary (aortic) coronary artery bypass grafting, mitral-valve replacement, and tricuspid valvuloplasty. The length of stay of
the patients was 37 days. Creatinine, uric acid, and urea nitrogen indices were stable before surgery, with a slight increase in
creatine kinase enzymes. Finally, the patient developed CSA-AKI.The individual importance by deleting one of the six
variables (i.e., counterfactual questions “what if SCr / UA / ... is another value?”, see Methods for details).

implementation of preventive strategies. However, observa-
tional data from 12 hospitals confirmed that all recommended
AKI prevention strategies were applied in less than 10% of
patients in routine clinical practice41, 42. This low adherence
may be attributed to the lack of a precise intervention “alert”
in the guidelines, making the implementation of preventive
strategies for CSA-AKI challenging. The limited ability of
humans to process complex information and its challenge for
clinicians to discern subtle changes in patients at an early
stage makes it difficult to discern and capture subtle changes
in patients from a large array of patient information. In addi-
tion, the inherent complexity of a patient undergoing cardiac
surgery, combined with the inherently traumatic aspect of
such procedures, can occasionally make a patient’s progress
abrupt and sharp. However, static risk scores or models based
on baselines fail to capture the real-time progress of patient

precipitating shifts during hospitalization10, 43. Tools focus
on predicting the binary event “yes or no” to guide the early
intervention windows is vague and bewildering. Our model ad-
dresses this issue with a more detailed and unambiguous time
window, capturing patient heterogeneity with personalized
scores, and more targeted and timely preventive interventions.

In addition, the pathophysiology of CSA-AKI is com-
plex, encompassing micromanipulation, toxins, metabolic,
hemodynamic and inflammatory factors, ischemia-reperfusion
injury, and oxidative stress44, 45. These injury mechanisms
may not only be interconnected, but also exhibit synergistic
behavior characterized by dynamic inter-correlation. Thus,
the prediction and interpretation of CSA-AKI involves nu-
merous complex aspects and parameters, making it a high-
dimensional, decision-making problem. Previous studies have
paid little attention to model interpretation and are mostly
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correlation-based, providing limited insight into novel mark-
ers and pathways beyond prior knowledge46–48. For simpler
medical scenarios, machine learning and neural networks may
be sufficiently effective. However, when these algorithms are
applied to dynamic settings with complex physiological mech-
anisms, methods based on correlational reasoning often risk
conflating correlation with causation, significantly limiting
the accuracy and stability of the predictions14. To address
the above challenges, we propose a two-phase algorithmic
framework that combines the universal approximation capa-
bility of neural networks with a causal discovery module to
eliminate confounders. These two-phase algorithmic syner-
gistically evolve during the training process, the first phase
leverages the model’s substantial fitting capabilities to con-
struct resilient and robust causal graphs. While the second
phase mimics RCTs, sequentially conducts simulated inter-
ventions on all variables, and steer the prediction model to
evaluate their impact on outcomes to progressively isolate
the most contributory variables. Our results demonstrate the
superiority of combining causal discovery and deep neural net-
works over associative reasoning alone in complex, temporal,
real-world tasks.

Although some algorithms have been developed for early
prediction AKI in intensive care unit (ICU) settings; however,
their efficacy is greatly dependent on the quality of the data
fed into the model and they often struggle to be applied. For
example, Tomašev and colleagues38, the most promising in
AKI prediction, their developed model that require inputs
from hundreds to thousands of features, including the histori-
cal medical records of the patient. In practical applications,
the absence of a single feature or changes in data structure can
potentially lead to a decline in the overall performance of the
model. Furthermore, due to privacy and ethical considerations
in hospitals, most clinically developed predictive tools are
typically used locally, necessitating substantial computational
power during model running. On an even more fundamen-
tal level, not all predictors are available in all datasets, which
limits applications to other institutions. Furthermore, data mis-
match between data distributions, typically between training

and test sets or development and deployment environments
(lab and real-world clinical environments), tends to hurt the
generalizability of learned models. As in the case of Tomasev
and colleagues, 94% of the participants were male. Subse-
quent validation on a gender-balanced cohort demonstrated
a decrease in predictive performance for women, potentially
due to data mismatch and interpretation in the training data18.
This very rationale inspired our shift towards causal deep
learning. While employing a comprehensive, multi-scale, and
extensive dataset for model training, REACT distills the com-
plex temporal dynamics among variables into six inexpensive,
readily available, objective variables as input by analyzing
the causal relationships buried in the temporal dimension.
This streamlined approach significantly advances the transi-
tion from machine learning models to genuine clinical utility.
Moreover, the applicability and practicality of our model is
validated in small-scale, prospective, multi-center studies.

Nevertheless, our study has limitations. Being a retrospec-
tive study, our study is subject to inherent biases. Despite
favorable performance in external and temporal validations,
further validation in other population studies is necessary to
confirm the risk prediction tool’s effectiveness in improving
clinical outcomes.

In conclusion, our study presents a pioneering model that
integrates deep learning with causal discovery, facilitating
continuous and advanced prediction of AKI up to 48 hours
ahead of clinically significant window. This model signifi-
cantly reduces the number of input variables required during
its application, shifting the computational burden and the need
for complex variable inputs to the training phase. The REACT
model, which embodies this causal deep learning approach,
demonstrates immense potential for wider applications be-
yond its current scope. For routine diagnosis and prediction
in an ICU setting, intervention times can be substantially ad-
vanced, allowing tailored treatment to start as soon as possible.
In addition, its low implementation cost enhances its poten-
tial to spread across different economic levels in country and
regional medical centers.
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Methods

Ethics statement and general clinical dataset
In this study, we adhered to the TRIPOD (Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or Diag-
nosis) guideline and the “Ensuring Fairness in Machine Learning to
Advance Health Equity” checklist to report prediction models (see
Supplements A, B). We utilized the First Medical Center (from 2000
to 2021) and the Third Medical Center of Chinese PLA General
Hospital (from 2000 to 2019) cardiovascular surgery cohort for pre-
dictive model derivation, we randomly allocated 80% of the patients
from these centers to the training set and reserved the remaining 20%
for internal validation. Subsequently, we tested the model using
data from three independent hospitals (The Sixth Medical Center
of Chinese PLA General Hospital, the seventh Medical Center of
Chinese PLA General Hospital, and Nanjing Drum Tower Hospital)
spanning 2000-2019. The surgical data for all five hospitals were
extracted from electronic medical records (Hospital Information
System, HIS), an electronic medical system encompassing com-
prehensive data on procedures, encoded diagnoses, and laboratory
values. It is noteworthy that in 2019, the Chinese PLA General
Hospital underwent a reorganization, merging eight previously in-
dependent hospitals. Consequently, the patients from the Third,
Sixth, and Seventh Centers included in this study were admitted
before this consolidation, ensuring that the patient populations were
distinct and retained their unique characteristics. All consecutive
eligible patients were recruited under a waiver of informed consent.
This study actively consented eligible patients and was approved
by the institutional review board of the Chinese PLA general hos-
pital (Identifier: S2021-305-01). This study was also approved by
the Ethical Review Committee of Nanjing Drum Tower Hospital
(Identifier: S2020-281-01).

Participants and data sources
The study population included adult patients (aged 18 years and
older) who underwent coronary artery bypass grafting (CABG),
valve surgery, aortic surgery, pericardial surgery, and heart trans-
plantations. We excluded patients who had transcatheter surgery, ex-
cept for those who received transcatheter aortic valve implantations
(Figure 2). We characterized patient comorbidities and procedures
using the International Classification of Diseases, Ninth Revision
(ICD-9), and the International Classification of Diseases, Tenth Re-
vision (ICD-10) codes. For individuals with multiple admissions,
we treated each admission as an independent data point. We ex-
cluded patients on long-term dialysis, those requiring preoperative
dialysis (up to 6 months before surgery), or those with preoperative
serum creatinine values of 4 mg/dL or higher. Furthermore, we ex-
cluded patients who developed moderate to severe AKI or initiated
dialysis at or before the first postoperative metabolic panel blood
draw.

Outcome measures
The primary endpoint of our study was the occurrence of all-stage
AKI, defined according to the modified KDIGO criteria for AKI
diagnosis. The criteria specified an increase in serum creatinine by
at least 50% within seven days or at least 0.3 mg/dL within 48 hours
after cardiac surgery compared to pre-PCI serum creatinine levels.
We used the most recent preoperative serum creatinine value as the
baseline. The secondary endpoint was AKI requiring dialysis.

Data preprocessing
In this study, we initially screened participants using 227 surgical
codes to account for the potential loss of patients due to incomplete
ICD code documentation. We meticulously extracted the names of
all surgeries meeting the study criteria and further assessed patients
by identifying keywords within surgical names, encompassing a
total of 78 items. To refine the study population, we diligently ex-
amined billing records during patients” hospital stays, pinpointing
289 surgery-related and consumable charges pertinent to the target
group.

To ensure data accuracy, we performed secondary verification
of electronic medical record (EMR) text within the database and
used Structured Query Language (SQL) to search and construct the
database from the Hospital Information System (HIS), with codes
reviewed by clinical experts and database engineers. Extracted data
were cross-checked against patients” scanned medical records using
a random sampling strategy, and search strategies were adjusted
based on sampling results. Simultaneously, secondary verification
of the data was conducted using relevant epidemiological surveys
and high-quality randomized controlled trials (RCTs), and cohort
studies. Multiple approaches were employed to process and sup-
plement patients” medical history and diagnoses, detecting and
correcting outliers to ensure data accuracy and reliability.

Comorbidities. To guarantee data reliability and validity, we in-
tegrated ICD-9 and ICD-10 disease codes and utilized natural lan-
guage processing tools and manual verification to further process
patients’ past medical history and address potential omissions of
complications. For underreported comorbidities such as hyperten-
sion and diabetes, we confirmed diagnoses by reviewing patients”
long-term medication prescriptions and referring to standard def-
initions. (For example, when determining whether a patient has
concomitant hypertension, the researchers extracted data from pa-
tients using antihypertensive drugs and conducted statistics and
analysis on patients who met the diagnostic criteria. As heart failure
patients are routinely treated with angiotensin-converting enzyme
inhibitors (ACEI) or angiotensin II receptor blockers (ARB) to im-
prove prognosis, this study determined whether there were compli-
cations of hypertension by retrieving vital sign information during
hospitalization and manually search for relevant cases.)

Laboratory examinations. To ensure data accuracy and consis-
tency for patients from multiple medical centers over a 20-year
period, we meticulously merged and standardized test items for
the same laboratory results according to the sample source, mea-
surement unit, and reference range. We compared and converted
different test names, units, and test kits to ensure consistency in
meaning.

Detection and correction of outliers. We conducted outlier detec-
tion and correction to ensure data accuracy, identifying physician
input errors based on medical common sense and implementing
corrective measures. We also constructed related new variables to
further inspect and correct the data. Additionally, we employed
machine learning outlier detection methods, such as the multivari-
ate Gaussian distribution, to process and examine structured data.
These techniques enabled a more detailed identification of potential
anomalies in the data, and combined with other patient information
and clinical experience, allowed for further analysis of suspicious
data, improving data quality and credibility.
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Sequential data transformation and construction. To enable
dynamic real-time early warning for CSA-AKI, preprocessed data
were transformed into temporally structured sequences, enhancing
the applicability of deep learning algorithms. Patient hospitalization
data, including vital signs, and laboratory test results, were chrono-
logically arranged to create time-series data. We do not use any kind
of imputation since the observed data points are sparse. Instead, we
indicate the missing points with additional ”presence” features. If
an indicator has been measured several times, the average measured
value of this indicator in the current time window is calculated as
the characteristic value of the current time window. Unreasonable
time intervals were identified and corrected. It is noteworthy that the
measurement time information for the indicators may be stored in
two fields: sample reception time and sample report time. In cases
where both are available, researchers prioritize the sample reception
time as the temporal information for the indicator. For potential
manual input errors, such as incorrect months or years, or implau-
sible intervals between measurements and reporting, researchers
identified and corrected unreasonable time gaps.

AKI labeling. In our study, the AKI categorization was derived
from the KDIGO guidelines. This categorization was used to define
the present status for each time interval. The subsequent 48-hour
statuses were then utilized as labels. Given the progressive nature
of AKI, it is noteworthy that some patients might directly present
with AKI stage II or III. In such instances, the initial AKI detection
time is considered as the onset of AKI stage I. Similarly, if a patient
is observed to be at AKI stage III, the earliest AKI detection time is
taken as the onset for both AKI stage I and stage II. Additionally,
auxiliary labels were incorporated for multi-task learning purposes.

Causal deep learning

Causality in deep learning. Causality is an emerging aspect in
deep learning. It mitigates the potential for deep learning models
to make data-driven errors by considering causal relationships con-
cealed within complex distributions, and moreover, ensures stability
and interpretability across different environments. As an example,
we can consider training a neural network to classify cats from dogs,
the model may learn to identify a dog by examining whether it is
on grass, as many pictures of dogs depict them running on grass.
However, this prediction becomes unstable since there may also
be pictures of dogs without grass16. This issue extends to medical
outcome prediction as well, such as predicting CSA-AKI. Relying
solely on a patient’s age for prediction is unstable, as it may result
in incorrect predictions when young patients develop CSA-AKI due
to other reasons. Conversely, if predictions are made based on the
risk factors that actually cause the outcomes49, e.g., predicting dogs
by looking at its ears and noses, predicting CSA-AKI with actual
reasons that cause CSA-AKI, the deep learning model becomes
more generalizable across different environments.

Structural causal model (SCM). Causality in time-series can be
represented as structural causal model (SCM)50 by taking into ac-
count spatio-temporal structural dependency. We denote a uniformly
sampled time-series as X = {x1:T,i}N

i=1, where xt is the sample vec-
tor at time t and consists of N variables {xt,i}, with t ∈ {1, ...,T}
and i ∈ {1, ...,N}. Then the structural causal model (SCM) for
time-series24 is

xt,i = fi(P(xt,i),ηt,i), i = 1,2, . . . ,N,

where fi is a (potentially) nonlinear function that represents

spatio-temporal structural dependency, ηt,i denotes latent variables
(which can also be considered as noise), and P(x j

t ) denotes the
causal parents of x j

t . The task for causal discovery (also for our
causal deep learning approach) is to identify those causal parents
for each variable. In Supplements S, we briefly discuss existing
approaches for causal discovery.

Nonlinear Granger causality. Granger causality is a major class
of approaches for causal discovery. We denote by X = {xi,k}N,K

i,k=1
our input dataset (for simplicity we treat all input data as time series
here; for static variables such as age or sex, we assume no causal
effects from CSA-AKI to these variables, which also satisfies the
assumptions of Granger causality), in which xi,k represents the ith
time series for patient k, with k ∈ {1, . . . ,K} and i ∈ {1, . . . ,N}, K
being the total patient number and N the time series number for
a patient. In this paper, we adopt the representation of existing
works23, 25, and the predicted probability for label Yk is

P(Yk = a) = fφ ,c(x1,k,x2,k, . . . ,xN,k)

where i = 1,2, . . . ,N, c = 1,2, . . . ,M, M is the number of
classes. In this paper, we focus on dealing with discovery of causal
relationships from X to Y. For a dynamic system, time-series i
Granger causes future outcomes Y when the past values of time-
series xi aid in the prediction of the future status of label Y. The
standard Granger causality is defined for linear relation scenarios,
but recently extended to nonlinear relations23, 25, 51:

Definition 1. Time-series i Granger cause outcome Y if and only if
there exists c and x′

i ̸= xi,

fφ ,c(x1, . . . ,x
′
i, . . . ,xN) ̸= fφ ,c(x1, . . . ,xi, . . . ,xN)

i.e., the past data of time-series i influences the prediction of Y.
The nonlinear Granger causality is highly compatible with neu-

ral networks (NN). Considering the universal approximation ability
of NN28, it is possible to fit a causal relationship function with
component-wise MLPs or RNNs/LSTMs. Moreover, by imposing
a sparsity regularizer onto the weights of network connections, as
mentioned by23, 52, NNs can learn the causal relationships from all
N variables to prediction label. Although Granger causality is not
necessarily true (Pearl) causality53, it is proved to support causal
conclusions when assuming no instantaneous effects and no latent
confounder54. And recently Granger causality has been applied to a
variety of applications because it discovers the causal parents of the
interested targets55.

The two-phase framework of REACT. In this paper, we propose
an approach to a) discover variables with causal influences on the
interested outcomes and, b) predict the outcomes with the discov-
ered causal variables. These two phases are performed jointly and
boosted mutually. In the following section we analyze why causal
discovery helps learning with explainability and generalizability.
We refer to our algorithm as REACT. To demonstrate our algorithm,
we first denote the Causal Probability Graph (CPG) as G = ⟨X ,m⟩
where the element mi ∈ m represents the probability of causal in-
fluence from xi to Y , i.e., mi = p(xi → Y ). During training, we
alternatively learn the prediction model and CPG matrix, which are
respectively implemented by Prediction model training phase and
Causality learning phase. We show the implementation details of
REACT in Supplements T.

Prediction model training phase. The proposed Prediction model
training phase is designed to predict medical outcomes with a neu-
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ral network fφ , whose structure is shown in Extended Figure 1. The
inputs to the neural network include all the historical data points
xi (i= 1,2, . . . ,N), and the discovered CPG. During training we sam-
ple the causal graph with Bernoulli distribution, in a similar manner
to25, 56’s work, and the predicted probability pi,c is the output of the
neural network fφ ,c

pi,c = fφ ,c(X⊙S)≡ fφ ,c(x1 · s1, . . . ,xN · sN)

where si ∼ Ber(1−mi). S is sampled for each training sample
in a mini-batch. In this phase, input mask S is used as a Dropout-
like regularizer34 to improve the robustness of the neural network.
During training, we update the network parameters φ by minimizing
the Focal Loss57 function Lpred.

Lpred(Y,X⊙S) =− 1
N

Kb

∑
k=1

M

∑
c=1

1yk=c (1− pk,c)
γ logpk,c

where Kb is the sample number in a mini-batch, M is the number

of classes, and 1yi=c =

{
1, if yi = c
0, otherwise . Since the class label for

CSA-AKI is highly imbalanced, Focal Loss can effectively address
the problem by assigning higher weights to difficult and misclassi-
fied examples. The output probability for class c from the softmax
layer is pi,c = fφ ,c(X⊙S).

Causality learning phase. After the Prediction model training
phase, we proceed to learn CPG in the Causal Discovery Phase,
to determine the causal probability mi = p(xi → Y ), we model
this likelihood with mi = σ(θi) where σ(·) denotes the sigmoid
function (σ(x) = 1

1+exp(−x) ) and θ is the learned parameter set.
Moreover, since the input data X always temporally precedes the
outcome Y , it is unnecessary to learn the edge direction in CPG.
Since si ∼ Ber(1−mi) are discrete variables and cannot be directly
optimized, we leverage the Gumbel-Softmax technique58. We op-
timize the graph parameters theta by minimizing the following
objective

Lgraph(X,Y,θ) = Lpred(Y,X⊙S)+λ ∥σ(θ)∥1

where Lpred is the Focal Loss penalizing prediction error de-
fined above and ∥·∥1 being the L1 regularizer to enforce sparse
connections on the learned CPG. If θi are penalized to −∞ (and
mi → 0), then we deduce that time-series i does not Granger cause
Y . We further prove in the Supplements R that under certain assump-
tions, the discovered causal vector will converge to the true Granger
causal relationships.

Simulated interventions. In the Prediction model training phase,
input mask S is sampled with Bernoulli distribution and serves as
a regularizer. While in this phase, the sampling is used to mimic
randomized controlled trials (RCTs) by conducting simulated inter-
ventions on each of the variables. Specifically, we intervene on the
model by randomly including and excluding a variable and evaluat-
ing the causal effects on the outcomes. Supplement R demonstrates
that for variables that are actually cause the outcome, the algorithm
tends to keep them. Conversely, for spurious variables, the algo-
rithm will gradually eliminate them. As a result, causal variables
are identified.

Selection of parameter λ . Causal threshold parameter λ , also
determines the number of included variables. A smaller λ incorpo-
rates more variables with diminished causal effects to the outcome,

potentially capturing inter-variable dynamics with spurious connec-
tions. Consequently, an excessively small λ curtails the model’s
transferability, while an overly large λ might compromise predic-
tion accuracy. Thus, the selection of λ delineates a balance between
model capacity and transferability, shown in Figure 5. When λ

increases from 5× 10−5 to 5× 10−3 and the number of variables
decreases from 59 to 6, the external testing performance increases
drastically while the internal validation performance changes only
slightly, as shown in Figure 5 and Supplements H - K. This proves
that our causal deep learning approach does possess the ability
to largely increase transferability while maintaining model capac-
ity with appropriately chosen λ . To further reveal the underlying
mechanism, local and global feature importances are analyzed by
calculating causal effect (Figure 5). We observe that by setting
a larger λ (i.e., 5×10−3), fewer causally-important variables are
included, which helps increase tranferability since these variables
are the most stable predictors. However, λ should not be too large
because it hampers prediction accuracy too much (λ = 5×10−2 for
1 variable model in Figure 5).

Generalizability of our model. The sampling strategy (si ∼
Ber(1−mi)) in our REACT, not only enables the incorporation
of CPG into the neural network, but also prevents the neural net-
work itself from overfitting since it also serves as a regularization
strategy like Dropout34. As a result, our model enhances the perfor-
mance and generalizability in the following two aspects, i) Select
the robust causal features in Causality learning phase. This is em-
pirically validated in Figure 5, which demonstrates that with only
six causal variables, the generalizability increases. ii) Prevent the
neural network from overfitting in the Prediction model training
phase. Experimentally, we show in Figure 5 that when training an-
other neural network with only causal features (without our causal
deep learning strategy), the performance is still lower than ours.
This demonstrates that REACT not only identifies causal variables
to enhance generalizability, but also avoids overfitting during the
training procedure.

Importance analysis via causal inference With the discovered
causal graph, we analyze the importance of each causal variable
by calculating average causal effects and counterfactuals. Since
all dynamic variables temporally exceed outcomes Yk, there are no
edge from Yk to X in the graph model. Moreover, if we assume there
are no unobserved confounders, then all backdoor paths from X to
Yk is blocked by conditioning on variables excluding xi

55, and the
direct effect is identified as

P(Yk | do(x
′
i), do(X\x

′
i)) = P(Yk | x

′
i, X\x

′
i)

where x
′
i is the reference value of xi, X\x

′
i is the set of variables

excluding x
′
i. In Figure 6c and Supplements U, we specifically ana-

lyze the counterfactual prediction Yx′ = P(Yk | do(x
′
i), do(X\x

′
i)).

Then individual importance (IIM) is defined as controlled direct
causal effect59

IIM(xi) = P(Yk = 1 | do(xi),do(X\xi)) −

P(Yk = 1 | do(x
′
i), do(X\x

′
i))

which is used in Figure 5b to demonstrate the importance of a
variable for a certain patient. To calculate the average importance
for all patient, we have

AIM(xi) =
1
N

K

∑
k=1

IIM(xk
i )
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where k denotes the sample index, N denotes the total sample
number. Note that our importance analysis approach has limitations.
We are based on the assumption that there is no unobserved con-
founder, which may be too strong in practice. If this assumption
does not hold, our causal inference analysis may be biased, and
the calculated result is only occlusion analysis of the deep learning
model60.

Model capabilities and clinical application
The REACT can generate AKI occurrence probability curves for
both patients without AKI and those with existing AKI within the
next 48 hours from the current time point. Concurrently, it outputs
probability values for AKI occurrence or progression within future
6, 12, 24, and 48-hour time frames. This methodology provides
personalized predictions, enabling physicians to efficiently monitor
patient progression and determine optimal intervention timings.

Our joint prediction model training and causality learning en-
able the identification of important features with significant causal
influences. This enables us to develop a lightweight model by ignor-
ing most features without significant causal influences (by setting
an appropriate λ ). This lightweight version not only reduces data
collection burden, hardware requirements, and deployment com-
plexity but also expedites the model training and inference process,
promoting widespread adoption in diverse medical institutions.

To improve the model’s transferability across medical institu-
tions with varying data collection completeness, the lightweight
version utilizing a limited set of high impact, easily collected vari-
ables was developed. This streamlined model reduces data collec-
tion burden, hardware demands, and deployment complexity while
accelerating training and inference, promoting widespread adoption
in diverse healthcare settings.

Model evaluation metrics and comparisons
The Area Under the Receiver Operating Characteristic Curve (AU-
ROC) was employed to gauge the model’s predictive accuracy, a
well-established metric for classification models, representing the
area beneath the Receiver Operating Characteristic (ROC) curve.
Higher AUROC values indicate superior classifier performance and
efficacy. In addition, the Area Under the Precision-Recall Curve
(AUPRC) is another commonly used metric for evaluating classifi-
cation models. The AUPRC quantifies the overall performance of
the classifier by calculating the area beneath the Precision-Recall
Curve. Higher AUPRC values indicate superior classifier perfor-
mance, especially in scenarios where the identification of positive
instances is of greater importance or when dealing with imbalanced
datasets.

Discrimination and calibration, essential performance indica-
tors in model evaluation, measure classification performance and
prediction accuracy. Discrimination evaluates the model’s effective-
ness in distinguishing between different sample classes, assessed
through classification accuracy, the ROC curve, AUROC values,
and the Precision-Recall Curve (PRC). High discrimination models
demonstrate robust classification capabilities, accurately identifying
positive instances while minimizing false positives. Calibration
measures the consistency between model predictions and actual out-
comes, typically assessed through prediction error, residual analysis,
and log-likelihood indicators. High calibration models yield results
closely aligned with actual outcomes.
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Extended Fig 1 算法具体结构

Extended Figure 1. Illustration of iterative causal deep learning process. Iterative causal deep learning. Our model consists
of two separate phases with EM-like training strategy. The Prediction model training phase predicts risks for AKI at each
time-points given time-series and static input. The Causality learning phase learns causal probability graphs with a fixed
prediction model. The causal deep learning eventually generates highly-accurate prediction models by only taking into account
causal features, which then boosts the external (or out-of-distribution) testing performance.

Extended Fig 5 假阳性分析

Extended Figure 2. Illustration of false-positives by analyzing the assessment time to closest AKI event. We show the
results by predicting all AKI within 24 hours, thresholded at 33% precision. We show the histogram of actual AKI events
before or after the time of assessment, excluding those within 0 to 24 hours after time of assessment (true positives). We
observe 34.4% of false positives are attributed to positive prediction after AKI, 8.2% are attributed to 24-48 hours after time of
assessment. Only about half (50.7%) are actual false positives and no AKI occurs at any point for this patient.
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Extended Fig 2 按照时间划分的测试结果
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Extended Figure 3. Model performance to validate longitudinal transferability. a, Receiver-operating characteristic curves
and Precision-recall curves for mild AKI within 24 hours, on internal validation (randomly allocated) and external testing
datasets (2018-2021, which is not included in the training and validation datasets), comparing with baseline methods without
casual learning (see Methods). b, AUROC and AUPRC on other prediction tasks and windows, i.e., 4 kinds of prediction
windows (6, 12, 24, 48 hours), each with 3 types of AKI (mild AKI, moderate AKI, and severe AKI).
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Extended Figure 4. Model performance of different patient cohorts in external testing datasets. a, Displays the AUROC
predictions of REACT across all subgroups. Different colors signify the model’s performance at various CSA-AKI stages, with
the vertical range indicating the model’s prediction performance variability within 48 hours of the event occurrence. The
corresponding abbreviations in the operation type subgroups are as follows: AS, Aortic surgery; CHS, congenital heart disease
corrective surgery; CABG, coronary artery bypass grafting; PC, pericardiectomy; VA, valve surgery. b, Illustrates the AUPRC
predictions of REACT in different subgroups and provides detailed information about the population and incidence rate within
each subgroup. Transverse subgraphs 1-5 specifically depict the model’s performance across varying surgical types, medical
centers, age groups, admission years and genders. Longitudinal subgraphs 1-3 use bar graphs to show the incidence rate of
CSA-AKI stage III- I among patients of different subgroups (as denoted on the left y-axis) and use plots to show the
corresponding CSA-AKI prediction AUPRC with the shadow indicating performance variability within 48 hours of the
event(as denoted on the right y-axis); In Longitudinal subgraph 4, the total number of patients in each subgroup is represented.
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Extended Fig 3 只用因果变量的对比测试结果

Extended Figure 5. Model performance comparing with baselines using only causal variables.Receiver-operating
characteristic curves and Precision-recall curves of different methods for mild AKI within 24 hours, on internal validation and
external testing datasets.

Extended Fig 6 Calibration

Extended Figure 6. Model calibration. Our model is well calibrated, here show calibration curves and Brier Score on internal
validation and external testing set.
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