Abstract
Background Efficient identification of individuals at high risk of skin cancer is crucial for implementing personalized screening strategies and subsequent care. While Artificial Intelligence holds promising potential for predictive analysis using image data, its application for skin cancer risk prediction utilizing facial images remains unexplored. We present a neural network-based explainable artificial intelligence (XAI) approach for skin cancer risk prediction based on 2D facial images and compare its efficacy to 18 established skin cancer risk factors using data from the Rotterdam Study.
Methods The study employed data from the Rotterdam population-based study in which both skin cancer risk factors and 2D facial images and the occurrence of skin cancer were collected from 2010 to 2018. We conducted a deep-learning survival analysis based on 2D facial images using our developed XAI approach. We subsequently compared these results with survival analysis based on skin cancer risk factors using cox proportional hazard regression.
Findings Among the 2,810 participants (mean Age=68.5±9.3 years, average Follow-up=5.0 years), 228 participants were diagnosed with skin cancer after photo acquisition. Our XAI approach achieved superior predictive accuracy based on 2D facial images (c-index=0.72, SD=0.05), outperforming that of the known risk factors (c-index=0.59, SD=0.03).
Interpretation This proof-of-concept study underscores the high potential of harnessing facial images and a tailored XAI approach as an easily accessible alternative over known risk factors for identifying individuals at high risk of skin cancer.
Funding The Rotterdam Study is funded through unrestricted research grants from Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. G.V. Roshchupkin is supported by the ZonMw Veni grant (Veni, 549 1936320).
Evidence before this study We searched PubMed for articles published in English between Jan 1, 2000, and Sept 28, 2023, using the search terms “skin cancer” AND “artificial intelligence” OR “deep learning”. Our search returned more than 1,323 articles. We found no study had explored the feasibility of predicting the risk of developing skin cancer based on facial images that were taken before the first diagnosis of skin cancer. Although there were studies focused on deep learning image analysis and skin cancer, those are based on skin cancer lesion images. We found current skin cancer risk prediction models are still hampered by dependencies on complex patient data, including genetic information, or rely on self-reported patient data.
Added value of this study In this study, we presented a neural network-based explainable artificial intelligence (XAI) approach for skin cancer risk prediction based on 2D facial images. To the best of our knowledge, our study is the first to utilize facial images as predictors in a skin cancer survival analysis. Our novel image-based approach showed superior performance when juxtaposed with traditional methods that relied on clinical and genetic skin cancer risk factors, as observed within our study population
Implications of all the available evidence This proof-of-concept study underscores the high potential of harnessing facial images and a tailored XAI approach as an easily accessible alternative over known risk factors for identifying individuals at high risk of skin cancer.
Competing Interest Statement
The authors declare the following financial interests which may be considered potential competing interests: The Erasmus MC Department of Dermatology has received an unrestricted research grant from SkinVision B.V
Funding Statement
The Rotterdam Study is funded through unrestricted research grants from Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. G.V. Roshchupkin is supported by the ZonMw Veni grant (Veni, 549 1936320).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Rotterdam Study has been approved by the Erasmus MC Medical Ethical Committee (MEC-02-1015), and by the Dutch Ministry of Health, Welfare and Sport (Population Screening Act, reference 3295110-1021635-PG). Written informed consent was obtained from all participants.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Funding sources: The Rotterdam Study is funded through unrestricted research grants from Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. G.V. Roshchupkin is supported by the ZonMw Veni grant (Veni, 549 1936320).
Conflicts of Interest: The authors declare the following financial interests which may be considered potential competing interests: The Erasmus MC Department of Dermatology has received an unrestricted research grant from SkinVision B.V
IRB approval status: The Rotterdam Study has been approved by the Erasmus MC Medical Ethical Committee (MEC-02-1015), and by the Dutch Ministry of Health, Welfare and Sport (Population Screening Act, reference 3295110-1021635-PG).
Data Availability
De-identified data used in this study is currently not publicly available. Researchers interested in data access should contact the corresponding author. Data requests will need to undergo ethical and legal approval by the relevant institutions.
https://gitlab.com/xianjingliu/ai_skin_cancer_risk_prediction