Summary
Waning antibody responses after COVID-19 vaccination combined with the emergence of the SARS-CoV-2 Omicron lineage led to reduced vaccine effectiveness. As a countermeasure, bivalent mRNA-based booster vaccines encoding the ancestral spike protein in combination with that of Omicron BA.1 or BA.5 were introduced. Since then, BA.2-descendent lineages have become dominant, such as XBB.1.5 or BA.2.86. Here, we assessed how different COVID-19 priming regimens affect the immunogenicity of the recently used bivalent booster vaccinations and breakthrough infections. BA.1 and BA.5 bivalent vaccines boosted neutralizing antibodies and T-cells up to 3 months after boost; however, cross-neutralization of XBB.1.5 was poor. Interestingly, different combinations of prime-boost regimens induced divergent responses: participants primed with Ad26.COV2.S developed lower binding antibody levels after bivalent boost while neutralization and T-cell responses were similar to mRNA-based primed participants. In contrast, the breadth of neutralization was higher in mRNA-primed and bivalent BA.5 boosted participants. Combined, we highlight important ‘lessons learned’ from the employed COVID-19 vaccination strategies. Our data further support the use of monovalent vaccines based on circulating strains when vaccinating risk groups, as recently recommended by the WHO. We emphasize the importance of the continuous assessment of immune responses targeting circulating variants to guide future COVID-19 vaccination policies.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
NCT05471440
Funding Statement
No private funding was received for these studies. The bivalent BA.5 vaccine mRNA-1273.222 was provided by Moderna. Moderna reviewed the final version of the manuscript, but had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All other vaccines were supplied by the Center for Infectious Disease Control, National Institute for Public Health and the Environment, the Netherlands (RIVM). This study was funded by the Netherlands Organization for Health Research and Development (ZonMw), grant agreement 10430072110001. The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Erasmus MC Medical Ethics Review Committee (Rotterdam, The Netherlands) gave ethical approval for this work (MEC-2022-0462).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Deidentified individual participant data, the analytics code, and other supporting documents will be made available when the study is complete, upon requests made to the corresponding author.