Predicting Clinical Outcomes of SARS-CoV-2 Infection During the Omicron Wave Using Machine Learning
Steven Cogill, View ORCID ProfileShriram Nallamshetty, Natalie Fullenkamp, View ORCID ProfileKent Heberer, View ORCID ProfileJulie Lynch, Kyung Min Lee, Mihaela Aslan, Mei-Chiung Shih, View ORCID ProfileJennifer S Lee
doi: https://doi.org/10.1101/2023.08.06.23293725
Steven Cogill
1VA Palo Alto Cooperative Studies Program Coordinating Center, Palo Alto, 94304, United States
2Big Data-Scientist Training Enhancement Program at VA Palo Alto Health Care System
PhDShriram Nallamshetty
1VA Palo Alto Cooperative Studies Program Coordinating Center, Palo Alto, 94304, United States
MDNatalie Fullenkamp
1VA Palo Alto Cooperative Studies Program Coordinating Center, Palo Alto, 94304, United States
MAKent Heberer
1VA Palo Alto Cooperative Studies Program Coordinating Center, Palo Alto, 94304, United States
2Big Data-Scientist Training Enhancement Program at VA Palo Alto Health Care System
PhDJulie Lynch
3VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT
4Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine
PhD, RN, MBA, FAANKyung Min Lee
3VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT
PhDMihaela Aslan
5VA Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
6Department of Medicine, Yale University School of Medicine, New Haven, CT
PhDMei-Chiung Shih
1VA Palo Alto Cooperative Studies Program Coordinating Center, Palo Alto, 94304, United States
7Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA
PhDJennifer S Lee
1VA Palo Alto Cooperative Studies Program Coordinating Center, Palo Alto, 94304, United States
2Big Data-Scientist Training Enhancement Program at VA Palo Alto Health Care System
8Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, and by courtesy, of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA
MD, PhDArticle usage
Posted August 09, 2023.
Predicting Clinical Outcomes of SARS-CoV-2 Infection During the Omicron Wave Using Machine Learning
Steven Cogill, Shriram Nallamshetty, Natalie Fullenkamp, Kent Heberer, Julie Lynch, Kyung Min Lee, Mihaela Aslan, Mei-Chiung Shih, Jennifer S Lee
medRxiv 2023.08.06.23293725; doi: https://doi.org/10.1101/2023.08.06.23293725
Predicting Clinical Outcomes of SARS-CoV-2 Infection During the Omicron Wave Using Machine Learning
Steven Cogill, Shriram Nallamshetty, Natalie Fullenkamp, Kent Heberer, Julie Lynch, Kyung Min Lee, Mihaela Aslan, Mei-Chiung Shih, Jennifer S Lee
medRxiv 2023.08.06.23293725; doi: https://doi.org/10.1101/2023.08.06.23293725
Subject Area
Subject Areas
- Addiction Medicine (400)
- Allergy and Immunology (711)
- Anesthesia (204)
- Cardiovascular Medicine (2961)
- Dermatology (250)
- Emergency Medicine (443)
- Epidemiology (12768)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4604)
- Geriatric Medicine (420)
- Health Economics (731)
- Health Informatics (2935)
- Health Policy (1069)
- Hematology (390)
- HIV/AIDS (927)
- Medical Education (429)
- Medical Ethics (116)
- Nephrology (472)
- Neurology (4384)
- Nursing (237)
- Nutrition (641)
- Oncology (2282)
- Ophthalmology (648)
- Orthopedics (258)
- Otolaryngology (326)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (502)
- Pediatrics (1199)
- Primary Care Research (499)
- Public and Global Health (6969)
- Radiology and Imaging (1537)
- Respiratory Medicine (917)
- Rheumatology (442)
- Sports Medicine (385)
- Surgery (491)
- Toxicology (60)
- Transplantation (212)
- Urology (182)