Passive sensing data predicts stress in university students: A supervised machine learning method for digital phenotyping
Artur Shvetcov, Joost Funke Kupper, Wu-Yi Zheng, Aimy Slade, View ORCID ProfileJin Han, Alexis Whitton, Michael Spoelma, Leonard Hoon, Kon Mouzakis, Rajesh Vasa, Sunil Gupta, Svetha Venkatesh, Jill Newby, Helen Christensen
doi: https://doi.org/10.1101/2023.07.29.23293375
Artur Shvetcov
1Black Dog Institute, UNSW Sydney, NSW, Australia
Joost Funke Kupper
2Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, Australia
Wu-Yi Zheng
1Black Dog Institute, UNSW Sydney, NSW, Australia
Aimy Slade
1Black Dog Institute, UNSW Sydney, NSW, Australia
Jin Han
1Black Dog Institute, UNSW Sydney, NSW, Australia
Alexis Whitton
1Black Dog Institute, UNSW Sydney, NSW, Australia
Michael Spoelma
1Black Dog Institute, UNSW Sydney, NSW, Australia
Leonard Hoon
2Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, Australia
Kon Mouzakis
2Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, Australia
Rajesh Vasa
2Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, Australia
Sunil Gupta
2Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, Australia
Svetha Venkatesh
2Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, Australia
Jill Newby
1Black Dog Institute, UNSW Sydney, NSW, Australia
Helen Christensen
1Black Dog Institute, UNSW Sydney, NSW, Australia
Data Availability
Data may be made available on request and subject to the relevant governance procedures.
Posted August 05, 2023.
Passive sensing data predicts stress in university students: A supervised machine learning method for digital phenotyping
Artur Shvetcov, Joost Funke Kupper, Wu-Yi Zheng, Aimy Slade, Jin Han, Alexis Whitton, Michael Spoelma, Leonard Hoon, Kon Mouzakis, Rajesh Vasa, Sunil Gupta, Svetha Venkatesh, Jill Newby, Helen Christensen
medRxiv 2023.07.29.23293375; doi: https://doi.org/10.1101/2023.07.29.23293375
Passive sensing data predicts stress in university students: A supervised machine learning method for digital phenotyping
Artur Shvetcov, Joost Funke Kupper, Wu-Yi Zheng, Aimy Slade, Jin Han, Alexis Whitton, Michael Spoelma, Leonard Hoon, Kon Mouzakis, Rajesh Vasa, Sunil Gupta, Svetha Venkatesh, Jill Newby, Helen Christensen
medRxiv 2023.07.29.23293375; doi: https://doi.org/10.1101/2023.07.29.23293375
Subject Area
Subject Areas
- Addiction Medicine (404)
- Allergy and Immunology (713)
- Anesthesia (208)
- Cardiovascular Medicine (2973)
- Dermatology (254)
- Emergency Medicine (446)
- Epidemiology (12828)
- Forensic Medicine (12)
- Gastroenterology (834)
- Genetic and Genomic Medicine (4627)
- Geriatric Medicine (424)
- Health Economics (733)
- Health Informatics (2946)
- Health Policy (1074)
- Hematology (394)
- HIV/AIDS (935)
- Medical Education (430)
- Medical Ethics (116)
- Nephrology (476)
- Neurology (4423)
- Nursing (238)
- Nutrition (653)
- Oncology (2299)
- Ophthalmology (654)
- Orthopedics (260)
- Otolaryngology (327)
- Pain Medicine (284)
- Palliative Medicine (85)
- Pathology (503)
- Pediatrics (1201)
- Primary Care Research (503)
- Public and Global Health (7014)
- Radiology and Imaging (1551)
- Respiratory Medicine (923)
- Rheumatology (446)
- Sports Medicine (386)
- Surgery (491)
- Toxicology (60)
- Transplantation (213)
- Urology (185)