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ABSTRACT 

 University students are particularly susceptible to developing high levels of stress, 

which occur when environmental demands outweigh an individual’s ability to cope. The 

growing advent of mental health smartphone apps has led to a surge in use by university 

students seeking ways to help them cope with stress. Use of these apps has afforded 

researchers the unique ability to collect extensive amounts of passive sensing data including 

GPS and step detection. Despite this, little is known about the relationship between passive 

sensing data and stress. Further, there are no established methodologies or tools to predict 

stress from passive sensing data in this group. In this study, we establish a clear machine 

learning-based methodological pipeline for processing passive sensing data and extracting 

features that may be relevant in the context of mental health. We then use this methodology 

to determine the relationship between passive sensing data and stress in university students. 

In doing so, we offer the first proof-of-principle data for the utility of our methodological 

pipeline and highlight that passive sensing data can indeed digitally phenotype stress in 

university students.  
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INTRODUCTION 

Stress is the physiological and psychological response when environmental demands 

outweigh an individual’s ability to cope (Cohen et al., 2007). Although brief exposures to low 

levels of stress are normal and even possibly beneficial for performance (Yuen et al., 2009), 

chronic stress can lead to serious consequences including depression, burnout, and disease 

(Bianchi et al., 2014; Cohen et al., 2007; Melamed et al., 1992; Weber & Jackel-Reinhard, 

2000). Early adulthood is characterized by rapid changes, both physiological and 

psychological. Further, there are many new challenges during this time including changing 

environments (e.g. moving to a new city), deadline pressures, increased social interaction and 

balancing school and work demands. Combined, these changes and pressures make university 

students particularly vulnerable to stress (Hamaideh, 2011; Lu, 1994; Verger et al., 2008). 

They are well-documented to develop signs of stress-induced psychological distress, which 

can lead to low academic achievement, interpersonal problems, depression, burnout, self-

harm, and suicide (Ribeiro et al., 2018; Sharp & Theiler, 2018).  

 Numerous mental health self-help mobile applications have been developed to combat 

university students’ poor mental health (Neary & Schueller, 2018). Here, students who are 

feeling distressed can rapidly access affordable, or free, applications that aim to provide them 

with coping skills and strategies for self-help without the need for traditional face-to-face 

psychological sessions with a therapist. Further, mobile phones are increasingly accessible 

and popular for younger people and therefore present an easy tool by which to deliver digital 

health services (Holtz et al., 2020). In line with this, younger adults show substantial interest 

in trying smartphone mental health apps, a phenomenon that was further increased by the 

recent COVID-19 pandemic (Ahuvia et al., 2022; Bautista & Schueller, 2023; Montagni et 

al., 2018). Students, in particular, are attracted to these types of apps due to immediate 

availability, convenience, confidentiality, and an ability to avoid the stigma associated with 
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seeking face-to-face appointments with mental health specialists (Holtz et al., 2020; Kern et 

al., 2018). Additionally, students experiencing academic stress and burdens associated with 

transitioning to post-secondary institutions are known to seek out smartphone apps to help 

them cope (Melcher et al., 2022).  

 Mental health smartphone apps have the benefit of being able to collect copious 

amounts of data from single users. Importantly, smartphones have multiple passive sensors 

that enable tracking of various aspects of users’ day to day lives. This passive sensing data 

includes GPS, which determines the location of the phone, an accelerometer and gyroscope to 

measure the acceleration in space and patterns of physical movement, and a step detector to 

estimate the number of steps. There has been a growing interest in using this passive sensing 

data to identify variables that can predict mental health status and outcomes. Variables that 

have been extracted from passive sensing data have been shown to be associated with mental 

health and psychiatric disorders including depression (Saeb et al., 2015), stress (Ben-Zeev et 

al., 2015), dementia (Galambos et al., 2013), bipolar disease (Beiwinkel et al., 2016) and 

schizophrenia (Ben-Zeev et al., 2016). 

Despite the growing interest in the relationship between passive sensing data and 

mental health, little is known about its relationship with stress in university students. Stress in 

and of itself is an important adaptive mechanism of survival that helps the body to mobilize 

resources to respond to threat. However, the chronic activation of the stress response system 

can lead to catastrophic physical and mental health outcomes. More specifically, chronic 

stress has been shown to lead to depression (Sawatzky et al., 2012), and problems with 

cardiovascular (Steptoe & Kivimäki, 2013) and immune (Winsa et al., 1991) systems. 

Smartphone-based interventions and tools that efficiently diagnose stress early are urgently 

needed to prevent these substantial health burdens. 
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Additionally, although previous research has shown a relationship between passive 

sensing data and mental health outcomes, there has been limited description of the 

methodologies used to both extract and process this type of data. For example, GPS data 

often has differences in the accuracy of determining coordinates due to a high dependency on 

factors including unobstructed receivers and good reception. Another example is that 

irregular smartphone internet connections can result in a data loss. It is imperative, therefore, 

to begin to work toward establishing clear methodologies that can translate into reproducible 

research using passive sensing data.  

In this study, we had two central aims: (1) to establish a clear methodological pipeline 

for processing passive sensing data and extracting features that may be relevant in the context 

of mental health and (2) to use this methodology to determine the relationship between 

patterns of university students’ mobility, as indicated by passive sensing data, and their stress 

levels. In doing so, we offer the first proof-of-principle data for our methodological pipeline 

and, using supervised machine learning models, demonstrate that passive sensing data can 

indeed digitally phenotype stress in university students.  

METHOD 

Study Design and Participants  

 Mental health app user data was collected from the Vibe Up study (Huckvale et al., 

2023). Vibe Up is a data collection application built for Android and iOS that uses an 

artificial intelligence algorithm to deliver the most effective mental health interventions to 

university student users in Australia. Participants of this study also completed survey-based 

mental health and wellbeing assessments throughout. Passive data, including accelerometer, 

gyroscope, activity monitoring, distance, and step count was collected across all 30 days of 

the study. Eligibility for participation was defined by the following: > 18 years of age, 

currently attending a tertiary institution in Australia, remaining in Australia throughout the 
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study period, and completed screening surveys. Users also had to have a Kessler 

Psychological Distress Scale (K10) score of <20 (Andrews & Slade, 2007) and Suicidal 

Ideation Attributes Scale (SIDAS) (van Spijker et al., 2014) >21, to ensure that although 

users weren’t likely to be “well” they didn’t have a high level of suicidal ideation. The study 

was approved by the University of New South Wales Human Research Ethics Committee, 

approval no. HC200466. 

Questionnaires 

At screening, users were asked questions about their demographic information 

including age, sex at birth, sexual orientation, language spoken at home, international or 

domestic student status, previous mental health diagnosis, and whether they used online 

mental health services in the past 12 weeks. Once users started the Vibe Up app, they 

completed the Depression and Stress Scale (DASS) three times across the study (Lovibond & 

Lovibond, 1995). Here, responses are encoded using 4-item rating scale ranging from ‘Did 

not apply to me at all’ (0) to ‘Applied to me very much, or most of the time’ (3). As stress 

was our primary outcome of interest (or output variable), we only used responses to the stress 

subscale. The level of stress was determined by summing the item scores, multiplying it by 

two, and converting it to a z-score using reference values for the mean (11.19) and standard 

deviation (8.25) of the general population of young adults aged 20-29. Further, participants 

were discretised based on the z-score into no stress group (z-score < 0.5), mild to moderate 

(z-score 0.5 to 2.0) and severe to extremely severe (z-score > 2.0) as has been done 

previously (Parkitny & McAuley, 2010).   

Passive Sensing Data Collection  

Passive data collection is managed by the Conductor Software Development Kit 

(SDK), which collects data based on predefined schedules. For Vibe Up, this collection 

period was all day for 30 days (the duration of each trial). The sample rates of each stream 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.07.29.23293375doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.29.23293375


7 
 

 
 

are unique based on the data being collected. GPS location is only recorded whenever a user 

has significantly moved. Similarly, activity monitoring, distance, and step count are only 

recorded if a user is actively moving. Accelerometer data is continuously recorded at 50 Hz 

on iOS and 60 Hz on Android. Gyroscope is recorded at 50 Hz, but on iOS this can only be 

collected while the app is in the foreground.  

Passive Sensing Data Feature Selection  

 The use of passive sensing data is becoming more widespread in the literature on 

mobile app use. Despite this, there remains little consensus and few, if any, descriptions of 

the methods by which passive sensing data is processed and features are extracted for 

downstream statistical and predictive models. Here, we suggest an approach that focuses on 

building directed, edge-weighted graphs that capture the main features of user mobility 

patterns (Fig. 1). 
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Figure 1. Schematic of the steps used to process raw passive sensing data collected from 
users’ mobile phones and identify usable features for subsequent statistical analyses and 
predictive modelling.  

 

Stage 1: Processing Raw Passive Sensing Data 

 The first consideration is that GPS coordinates collected from mobile phone apps can 

have technical inaccuracies that cause a specific location to look different every time an 

estimation occurs (i.e. has slightly different GPS coordinates). Therefore, we present each 

location as a multigraph with area of 5000m2, considerably larger than the average property 

size in Australia, to reduce noise that may be caused by these inaccurate coordinates and 

randomly captured activities while someone is moving around their property. All coordinates 

that fall into this area are considered as one location. From this data, it is then possible to: (1) 
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estimate the number of places a user visits, (2) calculate the distance between these places, 

(3) identify which location is likely to be home (highest number of occurrences / visits), and 

(4) identify which locations are likely to be irrelevant (lowest number of occurrences / visits). 

This data processed at this first stage can then be translated into usable features for statistical 

analyses and/or predictive models, including: number of places visited, frequency of visits, 

average distance, and maximum and minimum distances.  

Stage 2: Characterize the Routes and Paths Between Places Using Mobility Matrices 

 After identifying the number of unique places visited, we can then use the 

corresponding GPS timestamps to compute a mobility matrix for each user. The mobility 

matrix, therefore, contains information regarding date of visit, time of day (from 00:00 to 

23:59), and the order of visited places at specific time intervals daily across the study. From 

here, we can then calculate routes and paths that a user has taken between places. Further, by 

using the number of passes between visited places (used to determine how often the route is 

used), computed in Stage 1, we can estimate the relevance of the routes between different 

places as well as the direction of travel. Importantly, unlike in Stage 1, Stage 2 data 

processing covers most aspects of human mobility: how many places a user visits, how many 

routes a user uses to arrive at those places and how often, the typical order of places visit, the 

time the working day starts and ends, average time a person spent at a particular place, what 

the night time lifestyle looks like (e.g. frequent night activities suggesting socialization), and 

so forth. Additionally, it is worth noting that some apps collect data about the types of 

movement, number of steps, and distance travelled. Once overlapped with the GPS dataset, it 

is possible to add this data to the geometric maps to determine the preferred way of travelling 

between places. Although we did attempt to collect this type of data in the present study, 

there was a lack of overlap between steps and GPS timestamps. Therefore, instead of merging 

these data together, we treated steps as a separate variable and summed up the number of 
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steps per day. We then used quantiles (25%, 50%, and 75%), as well as maximum and 

minimum values as features. Overall, the data from Stage 2 can be extracted as several 

features including number of relevant places, number of paths, average path weight, and 

minimum and maximum path weights.  

Analytical Approach 

 To determine if the extracted passive sensing data features could predict stress, we 

deployed several machine learning algorithms including general linear algorithms (lasso and 

ridge regression, shrinkage discriminant analysis (SDA)), geometric distance-based 

algorithms (k-nearest neighbour (KNN)), tree-based algorithms (classification and regression 

trees (CART), random forest), and artificial neural networks (ANN). The dataset was split 

into a training dataset and testing, held-out dataset (70% and 30% respectively). Machine 

learning models were built, fine-tuned and validated on the training dataset by using three-

fold cross-validation repeated five times. For the final assessment of machine learning 

models’ performance a held-out dataset was used. Where there were class imbalances of the 

output variable, an oversampling technique was used whereby the underrepresented class is 

randomly resampled to ensure that the algorithms receive approximately the same number of 

classes. For all algorithms, a fine-tuning grid method was used where all possible 

combinations of parameters within the predetermined ranges were estimated (Table 1).  

 

Table 1. Parameters of the supervised machine learning algorithms used to predict stress 
based on passive sensing data features.  

Model Parameters 
Linear regression α: 0, 1 

λ: 0.001-1 
Shrinkage discriminant 
analysis (SDA) 

Diagonal: true, false  
λ: 0.001-1 

K-nearest neighbour (KNN) Number of the nearest neighbours: 1-15 
Classification and Complexity parameter: 0.001-0.1 
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regression trees (CART) 
Random forest  Number of variables randomly sampled: 1-# of features in 

dataset 
Artificial neural networks 
(ANN) 

Number of hidden layers: 0 and 1 
Number of neurons in hidden layers: 3-50 
Activation function: tanh, relu, leaky relu 
Optimization algorithm: Adam, RMSprop, SGD 
Learning rate: 0.01-0.00001 
Batch size: 16-32 
Epochs: 10-100 
Regularization dropout layer with probability: 0.1-0.8 
Kernel regularizer: L1, L2 

 

 To estimate the performance of the binary classification models, we used area under 

the curve (AUC). This measure reflects the level of sensitivity and specificity of the model 

and thus general distinguishing capacity of the model. We also used precision, indicating the 

proportion of positive predictions is correct, recall, to indicate the proportion of actual 

positive cases that were predicted correctly and F1, which is a harmonic mean of precision 

and recall.  

 All inferential statistics were performed using Kruskal-Wallis followed by a post-hoc 

Dunn test for three samples comparisons. A Benjamini-Hochberg multiple correction was 

applied to adjust the p values and reduce the risk of a false positive. To determine the 

correlation between features and the output variable, a Pearson correlation coefficient was 

used. Analyses were performed in RStudio with R 3.6.3. Supervised machine learning was 

done using the caret package and neural networks were built using keras library.  

RESULTS 

Participant Characteristics  

 The demographic characteristics of the Australian university student users of the Vibe 

Up app are shown in Table 2. The average age of user was 23.6 (range 18 to 34). The 

majority of users identified as female (76%), spoke English at home (94%), and were 

domestic students (95%). Approximately half of the user group had a previous mental health 
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diagnosis (54%) although comparatively fewer (25% of users) had used online mental health 

services in the past 12 weeks. A substantial number of users (39%) identified as being 

LGBTQIA+ (Table 2).     

 

Table 2. Demographic characteristics of the university student users of the Vibe Up app 

  
Sample numbers 409 
Age (average, + SEM, 
and range) 

23.6 ± 5.2 (18-34) 

Sex at birth 76% female 
Identify as LGBTQIA+ 39% 
Speak English at home 94% 
Domestic student 95% 
Previous mental health 
diagnosis 

54% 

Used online mental 
health service in the 
past 12 weeks 

25% 

  

Features show weak relationship with stress z-scores   

We first performed inferential statistics determine which features, if any, show 

significant relationship with the output (Fig. 2).  

 

Figure 2. Examples of the linear nature of the relationship between passive sensing features 
and output (stress) for the best performing features. (A) Individual feature of number of 
unique nodes (r = 0.17). (B) Engineered feature of combined average node visits per day with 
75th quantile of graph weight (r = 0.21).  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.07.29.23293375doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.29.23293375


13 
 

 
 

 

Although twenty features significantly correlated with stress z-score, the correlation 

coefficients (-0.15-0.17) indicated a weak relationship between the features and output. To 

further confirm our initial finding, we used linear regression with number of unique nodes as 

a predictor and the stress z-score as the value. Similarly, although the overall fit was 

statistically significant (p < 0.0001) it demonstrated a very low R2 value (R2 = 0.04, F=7.56) 

and the data points were scattered, indicating that the model is unable to explain the variance 

in stress z-score. We then tried to perform feature engineering, including weights of graphs, 

whereby we combined existing features together to examine the correlation with output. 

Although this slightly improved the correlations, they were still weak (-0.19-0.21). We 

further confirmed this by developing and training a ridge linear model on a training dataset 

and testing the model on a held-out dataset. This resulted in an RMSE of 0.87, suggesting 

that the model was misclassifying by an entire category of users.  

Our initial findings highlighted that weak correlations don’t result in predictive 

power. One way to improve the performance of our predictive models is to discretise the 

output variable into a few groups. This would shift away from a regression-type problem 

towards classification. 

Multi-class classification is similarly unable to predict stress 

We binned the stress z-scores into three categories: no stress (<0.5), mild to moderate 

(0.5 to 2), and severe to extremely severe (>2). To determine if the use of stress as a 
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continuous, rather than categorical, variable was affecting the ability to develop predictive 

models, we next binned the stress z-scores into three categories: no stress (<0.5), mild to 

moderate (0.5 to 2), and severe to extremely severe (>2). A Kruskal-Wallis (χ2 = 11.03, df = 

2, p = 0.004) with post-hoc Dunn test confirmed that there was a statistically significant 

differences in the number of unique nodes between these groups (Fig. 3).  

Figure 3. Stress z-scores binned into three categories: no stress (<0.5), mild to moderate (0.5-2), and 
severe to extremely severe (>2). 

 

After successfully binning the stress z-scores into three distinct groups, we next 

developed a multi-class classification model, CART, to identify if any of the features were 

now able to predict stress. The model, however, demonstrated very low predictive power 

(AUC <0.5).  

 

The mild-moderate stress group impacts predictive power in a binary classification  

 We next sought to identify the potential source of our models’ low predictive power. 

One possibility was the inclusion of the mild to moderate stress group. The rationale for this 

was twofold. First, there is evidence that mild to moderate stress can be beneficial, including 

improving performance and efficiency on dual tasks (Beste et al., 2013) and concentration 

(Degroote et al., 2020). It may be the case, therefore, that while some university students may 

find stress overwhelming others may benefit from mild to moderate stress. This possibility, 

therefore, suggests that the mild to moderate group is likely heterogenous and highly 

variable. Evidence for this can also be seen in Figure 2 whereby the variability in number of 

nodes and node visits per weight is higher in the mild to moderate users (z-score 0.5 to 2). 

There is also substantial overlap between the mild to moderate group with the no stress and 

severe to extremely severe groups on these two passive sensing measures (Figure 3A,B). An 

additional consideration was more severe cases of stress in university students are likely to 
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co-occur with clinical mental health diagnoses, including major depression (Muscatell et al., 

2009). Therefore, we wanted to assess whether we could improve the clinical translatability 

by identifying whether digital phenotyping via passive sensing data could differentiate the not 

stressed from the severely stressed.  

 After removing the mild to moderate group, we re-performed a binary classification to 

see if our passive sensing features could predict whether a user had no or severe to extremely 

severe stress. Using inferential statistics, we first demonstrated that removal of the mild to 

moderate group improved both the correlation coefficient and significance of the relationship 

between features and stress (Table 3).   

Table 3. Examples of features correlated with the stress z score in original dataset and 
trimmed dataset with no mild to moderate stress group. 

Features Original Dataset 
with Three Groups 

No Mild to 
Moderate Group 

Correlation 
Coefficient 

p value Correlation 
Coefficient 

p value 

Number of unique nodes 0.17 0.002 0.37 0.0001 
Number of nodes visited per day (75th 
quantile) 

0.14 0.003 0.36 0.0002 

Average number of steps per day -0.14 0.003 -0.25 0.002 
 

 Given that we were able to substantially improve the correlation coefficient, we then 

deployed several predictive machine learning models to determine if these correlations were 

sufficiently strong enough to be good classifiers. Using the AUC metric, our models showed 

satisfactory performance (Table 4). Despite this, however, the precision and/or recall for all 

but one models was low, indicating that the models struggled to predict at least one of the two 

groups. We then developed and deployed a neural network to help overcome this and were 

indeed able to improve the performance metrics, suggesting that it was able to successfully 

distinguish between users who were not stressed and those who were severely to extremely 

severely stressed.  
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Table 4. Machine learning algorithm performance metrics for predicting users with no stress 
vs. severe to extremely severe stress.  

Machine Learning Algorithm Precision Recall F1 AUC 
Classification and regression 
trees (CART) 

0.17 0.50 0.26 0.68 

Random Forest 0.24 1 0.38 0.67 
Shrinkage discriminant analysis 
(SDA) 

0.47 0.67 0.55 0.69 

General linear model  0.24 0.80 0.36 0.67 
K nearest neighbour 0.41 0.70 0.52 0.70 
Neural network 0.82 0.78 0.80 0.79 
 

Further polarizing the no stress and severe to extremely severe stress groups continues 

to improve predictive power of binary classification models  

 Although it was clear that the mild to moderate group was indeed affecting the 

predictive power of our models, only our neural network (out of 6 different supervised 

machine learning models) performed to a sufficiently high level. This suggested that our 

findings may be limited with respect to generalizability. To address this, we further increased 

the minimum z-score of the severe to extremely severe stress group (increased z-score of >2 

to z-score of >2.2). Again, the rationale for this was that we wanted to determine if there was 

a potential for clinical translatability of our model to digitally phenotype those who are not 

stressed relative to those who are experiencing such severe stress that they are high risk of 

comorbid clinical mental health diagnoses like major depression.  

We first confirmed that increasing the minimum z-score of the severe to extremely 

severe group to 2.2 had a positive effect on the correlation coefficient and statistical 

significance between our features and groups (Table 5). 

 

Table 5. Examples of features correlated with the stress z score in original dataset, trimmed 
dataset with no mild to moderate stress group, and a dataset where severe to extremely severe 
stress >2.2  
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Features Original Dataset 
with Three Groups 

No Mild to 
Moderate Group 

No Mild to 
Moderate Group, 

Severe to 
Extremely Severe 

Stress >2.2 
Correlation 
Coefficient 

p value Correlation 
Coefficient 

p value Correlation 
Coefficient 

p value 

Number of unique 
nodes 

0.17 0.002 0.37 0.0001 0.41 0.0001 
 

Number of nodes 
visited per day 
(75th quantile) 

0.14 0.003 0.36 0.0002 0.42 0.0001 
 

Average number of 
steps per day 

-0.14 0.003 -0.25 0.02 -0.27 0.01 

 

We then examined how redefining the severe to extremely severe stress group 

affected predictive performance in our machine learning models. This improved the models’ 

performance across all models used and performance metrics. Importantly, redefining the 

severe to extremely severe stress group improved both the precision and recall, suggesting 

that our models were indeed able to differentiate between users with no stress and those who 

were severely to extremely severely stressed (Table 6).  

 

Table 6. Machine learning algorithm performance metrics for predicting users with no stress 
vs. severe to extremely severe stress.  

Machine Learning Algorithm Precision Recall F1 AUC 
Classification and regression 
trees (CART) 

0.5 0.67 0.55 0.55 

Random Forest 0.67 0.67 0.67 0.62 
Shrinkage discriminant analysis 
(SDA) 

0.67 0.67 0.67 0.74 

General linear model  0.75 0.69 0.72 0.68 
K nearest neighbour 0.67 0.62 0.64 0.64 
Neural network 0.93 0.87 0.83 0.90 
 

 To further visualize the differences that were predictive of stress status, we built 

multigraphs of passive sensing features for representative single users from both the no stress 

and severe to extremely severe stress groups. For the user with no stress, they visited only 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.07.29.23293375doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.29.23293375


18 

 

seven places an average time of once per day across the duration of the study. They also had 

a 75th quantile path weight of 8.25 (Fig. 4). The severe to extremely severe user, however, 

visited 25 places an average of three times per day throughout the study and a 75th quantile 

path weight of 4 (Fig. 4).  

 

Figure 4. Multigraphs of representative user from the (A) no stress and (B) severe to 
extremely severe stress groups.  

 

DISCUSSION 

 Using a novel methodological pipeline, we showed that key features from passive 

sensing data served as a predictor of severe to extremely severe stress across several 

supervised machine learning models. Key features included number of unique nodes 

(locations), number of nodes visited per day (75th quantile), and average number of steps per 

day. These passive sensing features alone were able to differentiate someone who was not 

stressed versus someone who was severely to extremely severely stressed.  

 Although two previous studies demonstrated that there was a correlation between 

GPS features and stress levels in university students, they focused on other features including 
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longer distance between locations (Muller et al., 2020), evenly distributed time spent at 

different locations (Muller et al., 2020), and total distance travelled daily (Ben-Zeev et al., 

2015). To our knowledge, this is the first paper that shows that a high number of locations, 

number of locations visited per day, number of steps could predict university students who 

were severely to extremely severely stressed. Further, this is the first study that has used 

supervised machine learning to demonstrate that these features can indeed predict the level of 

stress in university students. This is an important finding in the context of both diagnosis and 

treatment. First, it suggests that apps that collect passive sensing data may be used to 

diagnose or predict the level of stress someone is experiencing, allowing us to move away 

from cumbersome, and at times biased, self-report questionnaires to assess stress (Razavi, 

2001). Second, our finding suggests that we can use passive sensing data to determine a 

mental health intervention that may be best suited to a particular user. Personalized mental 

health interventions have gained popularity with the recent advent of just-in-time adaptive 

intervention (JITAI) apps. These apps are designed to tailor interventions to the particular 

needs of the user based on their response to screening questionnaires (e.g. psychological self-

reports) (Nahum-Shani et al., 2015). Importantly, passive sensing data analyses do not require 

any additional efforts on the part of the user, highlighting that apps can rapidly tailor or adjust 

interventions on both immediate and ongoing bases. Future research would benefit from 

examining whether the inclusion of the passive sensing data features can help to better tailor 

mental health intervention programs to the individual user.   

 As discussed, although there are several examples of previous work examining the 

relationship between GPS data and stress, these works have been limited to correlational 

analyses and have not fully described the data-specific methodologies. Critically, our study is 

the first to describe a clear methodological pipeline for extracting features from real-world 

passive sensing data and, using supervised machine learning, confirm that they can be used 
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for digital phenotyping. With the growing accessibility of passive sensing data sourced from 

healthcare smartphone apps, there is an urgent need to establish clear methodologies that can 

be used and replicated by other research groups. First, this marks an important step away 

from black box style analyses, toward those that are both robust and reproducible. Second, 

clear methodological pipelines for rapid digital phenotyping from passive sensing data are 

essential for the success of personalized healthcare apps like JITAIs. Given that we’ve 

established that digital phenotyping severe to extremely severe stress is possible, there are 

two next steps for future research. First, our approach should be validated in a cohort of 

patients with severe stress-related clinical diagnoses such as major depression to establish its 

clinical translatability and validity. Second, future research should incorporate our 

methodological pipeline into a JITAI app to establish if it can improve its potential for 

targeted, personalized interventions.  

 While this is a promising first step toward using passive sensing data for digital 

phenotyping, there are some limitations. First, our passive sensing data was unable to 

digitally phenotype users with mild to moderate stress. Although we presented evidence of 

why this may be the case and highlighted the potential for a high level of heterogeneity in this 

stress group, future research should establish if there are ways to differentiate between users 

who are benefiting from their stress levels from those who are not. This could be done, for 

example, by the inclusion of additional questionnaires to assess users’ subjective experience 

of their current performance on tasks and ability to handle stress. From an early intervention 

approach, it is essential to elucidate whether digital phenotyping may be able to predict those 

at risk of transitioning from mild to moderate stress to more severe stress. This remains an 

important line of enquiry for future research. Another consideration of the present work is 

that the users of the Vibe Up app were more likely to be female than male, resulting in a 3:1 

ratio of females to males. Although this is in line with previous research of university student 
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mental health app users (Yang et al., 2018), it suggests that future work needs to establish 

whether this digital phenotyping extends to male students as well.   
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